Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
a). Perihelion . . . the point in Earth's orbit that's closest to the Sun.
We pass it every year early in January.
b). Aphelion . . . the point in Earth's orbit that's farthest from the Sun.
We pass it every year early in July.
c). Proxihelion . . . a made-up, meaningless word
d). Equinox . . . the points on the map of the stars where the Sun
appears to be on March 21 and September 21.
Answer:
Average velocity v = 21.18 m/s
Average acceleration a = 2 m/s^2
Explanation:
Average speed equals the total distance travelled divided by the total time taken.
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
Average acceleration equals the change in velocity divided by change in time.
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
Where;
v1 and v2 are velocities at time t1 and t2 respectively.
And x1 and x2 are positions at time t1 and t2 respectively.
Given;
t1 = 3.0s
t2 = 20.0s
v1 = 11 m/s
v2 = 45 m/s
x1 = 25 m
x2 = 385 m
Substituting the values;
Average speed v = ∆x/∆t = (x2-x1)/(t2-t1)
v = (385-25)/(20-3)
v = 21.18 m/s
Average acceleration a = ∆v/∆t = (v2-v1)/(t2-t1)
a = (45-11)/(20-3)
a = 2 m/s^2
The answer is A. When the the temperature increases the kinetic energy increases
To solve this problem we will apply the concepts related to the potential, defined from the Coulomb laws for which it is defined as the product between the Coulomb constant and the load, over the distance that separates the two objects. Mathematically this is

k = Coulomb's constant
q = Charge
r = Distance between them


Replacing,



Therefore the potential at the surface of the raindrop is 135 V