<h3><u>Given</u><u>:</u><u>-</u></h3>
Acceleration,a = 3 m/s²
Initial velocity,u = 0 m/s
Final velocity,v = 12 m/s
<h3><u>To</u><u> </u><u>be</u><u> </u><u>calculated:-</u><u> </u></h3>
Calculate the time take by a car.
<h3><u>Solution:-</u><u> </u></h3>
According to the first equation of motion:
v = u + at
★ Substituting the values in the above formula,we get:
⇒ 12 = 0 + 3 × t
⇒ 12 = 3t
⇒ 3t = 12
⇒ t = 12/3
⇒ t = 4 sec
Real images can be either upright or inverted. Real images can be magnified in size, reduced in size or the same size as the object. Real images can be formed by concave, convex and plane mirrors. Real images are not virtual; thus you could never see them when sighting in a mirror.
Answer: 15 cm
Explanation:
According to the Lens Equation we have the following:
(1)
Where:
is the focal length
is the distance between the candle (the object) and the lens
is the distance between the image and the lens
Isolating
:
(2)
Solving:
(3)
Finally:
This is where the image is located
Answer:
mechanical waves,
.
the quality of a sound governed by the rate of vibrations producing it; the degree of highness or lowness of a tone.
.
If the amplitude increases the volume increases and vice versa.
.
The type of medium affects a sound wave as sound travels with the help of the vibration in particles.
.
The higher the frequency, the shorter the wavelength.
Explanation:
Answer:
The speed decreases.
Explanation:
This can be explained using the conservation of linear momentum.
Since there is no friction, the initial moment of the train must be equal to its linear moment after it is filled with water.
the initial linear momentum is

where
is the initial mass of the train, and
the initial speed of the train.
And linear momentum after the water filled the train car is

where
is mass of the train after the rain, and
the speed of the train after the rain
<u>the equality must be fulfilled:</u>

We know that if water is added to the train,
that is the mass after the water is added, is greater than
which is the mass of the train without the water.
Therefore, in order for the conservation of the linear momentum to be fulfilled: 
the speed after the water is added (
) must be smaller than the initial train speed (
) . So the speed of the car decreases.