Answer: 20.4 miles
Explanation:
Here we need to use the equation:
Velocity = Distance/Time.
Initially we have that he can travel 30 miles in 2 hours, so the velocity is:
V = 30mi/2h = 15mph
Now, we reduce the velocity by 3 mph, so the new velocity is 15mph - 3 mph = 12mph.
Now we want to know the distance traveled in 1.7 hours with this velocity, this is.
Velocity*Time = Distance
12mi/h*1.7h = 20.4 miles
While ice melts, it remains at 0 °C, and the liquid water that is formed with the latent heat of fusion is also at 0 °C. The heat of fusion for water at 0 °C is approximately 334 joules per gram, and the heat of vaporization at 100 °C is about 2,230 joules per gram. So it will be C
The answer to the question is A
Answer:
∑Fy = 0, because there is no movement, N = m*g*cos (omega)
Explanation:
We can solve this problem with the help of a free body diagram where we show the respective forces in each one of the axes, y & x. The free-body diagram and the equations are in the image attached.
If the product of mass by acceleration is zero, we must clear the normal force of the equation obtained. The acceleration is equal to zero because there is no movement on the Y-axis.
Technically this is a Biology question;
The 'amount' we can see depends on how much light can get through our pupil to hit our retina.
When there is a lot of light the pupil is small; it doesn't need to be big to let a lot of light in.
When we move to a dark space there is much less light, so the pupil 'dilates' to let enough light so we can see properly.
The period in which one cant see is simply when the pupil hasn't had time to change shape yet so doesn't let in enough light.<span />