Answer:
6
Step-by-step explanation:
That would be:
3 6
---- -------
2 4
---------------- = -------------- = 6 This is the unit rate.
1 1
----- ------
4 4
- Center =
![(h,k) = (0,2.25)](https://tex.z-dn.net/?f=%28h%2Ck%29%20%3D%20%280%2C2.25%29)
- Radius =
![r = \frac{14}{13}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B14%7D%7B13%7D)
<u>Step-by-step explanation:</u>
Here we have following equation : ![x^{2}+(y-2.25)^{2} = \dfrac{196}{169}](https://tex.z-dn.net/?f=x%5E%7B2%7D%2B%28y-2.25%29%5E%7B2%7D%20%3D%20%5Cdfrac%7B196%7D%7B169%7D)
We need to find the center & radius of this circle . Let's find out:
We know that , Equation of a circle is given by :
⇒
........(1)
Here , (h,k) are the co-ordinates of center & r is the radius of circle.Collectively called as a circle with radius r and center at (h,k) . Let's frame given equation in question :
⇒ ![x^{2}+(y-2.25)^{2} = \frac{196}{169}](https://tex.z-dn.net/?f=x%5E%7B2%7D%2B%28y-2.25%29%5E%7B2%7D%20%3D%20%5Cfrac%7B196%7D%7B169%7D)
⇒ ![(x-0)^{2}+(y-2.25)^{2} = (\frac{14}{13})^2](https://tex.z-dn.net/?f=%28x-0%29%5E%7B2%7D%2B%28y-2.25%29%5E%7B2%7D%20%3D%20%28%5Cfrac%7B14%7D%7B13%7D%29%5E2)
On comparing this equation with equation (1) we get :
- Center =
![(h,k) = (0,2.25)](https://tex.z-dn.net/?f=%28h%2Ck%29%20%3D%20%280%2C2.25%29)
- Radius =
![r = \frac{14}{13}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B14%7D%7B13%7D)
A.12 because i had same question
<span />
Hi there!
The answer you're looking for is
218 because 10+4 exponent 4 - 6 x 8 that's the parenthesis then you find the answer to the exponent = 10 + 256 - 48 Then you add and subtract 10+256-48=218 Hope it helps <3
Answer:
![a(n+1)=a(n)+11](https://tex.z-dn.net/?f=a%28n%2B1%29%3Da%28n%29%2B11)
Step-by-step explanation:
The difference between two consecutive elements is 11.
![8=-3+11\\19=8+11\\30=19+11\\41=30+11\\52=41+11\\](https://tex.z-dn.net/?f=8%3D-3%2B11%5C%5C19%3D8%2B11%5C%5C30%3D19%2B11%5C%5C41%3D30%2B11%5C%5C52%3D41%2B11%5C%5C)
Hence ![a(n+1)=a(n)+11](https://tex.z-dn.net/?f=a%28n%2B1%29%3Da%28n%29%2B11)