the ideal gas equation is PV=nRT
where P=pressure
V=Volume
n=no. of moles
R=universal gas constant
T=temperature
The universal gas constant (R) is 0.0821 L*atm/mol*K
a pressure of 746 mmhg =0.98 atm= 1 atm (approx)
T=37 degrees Celsius =37+273=310 K (convert it to Kelvin by adding 273)
V=0.7 L (only getting oxygen, get 21% of 3.3L)
Solution:
(1 atm)(0.7 L)=n(0.0821 L*atm/mol*K)(310 K)
0.7 L*atm=n(25.451 L*atm/mol)
n=0.0275 mole
Answer:
n=0.0275 mole of oxygen in the lungs.
Answer:
Explanation:
Cu(NO₃)₂ + 4NH₃ = Cu(NH₃)₄²⁺ + 2 NO₃⁻
187.5 gm 4M 1 M
187.5 gm reacts with 4 M ammonia
18.8 g reacts with .4 M ammonia
ammonia remaining left after reaction
= .8 M - .4 M = .4 M .
187.5 gm reacts with 4 M ammonia to form 1 M Cu(NH₃)₄²⁺
18.8 g reacts with .4 M ammonia to form 0.1 M Cu(NH₃)₄²⁺
At equilibrium , the concentration of Cu²⁺ will be zero .
concentration of ammonia will be .4 M
concentration of Cu(NH₃)₄²⁺ formed will be 0.1 M
Speed is actually instantaneous speed, the speed an object is moving at that very instant.
But average speed is the total distance traveled divided by the total time.
Let's say you travelled 10 miles in 2 hours, your average speed would be 10 divided by 2, which is 10 miles / hr.
But during those 10 miles you may be accelerating, decelerating and be travelling 1 mile/hour and 20 miles/hour at another point. But your average speed would be total distance / total time. So your instantaneous speed can change throughout that period of time.
<u>Answer:</u> The equilibrium constant for the total reaction is 
<u>Explanation:</u>
We are given:

We are given two intermediate equations:
<u>Equation 1:</u> 
The expression of
for the above equation is:
![K_{c_1}=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_%7Bc_1%7D%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
.......(1)
<u>Equation 2:</u> 
The expression of
for the above equation is:
![K_{c_2}=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_%7Bc_2%7D%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
......(2)
Cubing both the sides of equation 2, because we need 3 moles of HI in the main expression if equilibrium constant.
![(41)^3=\frac{[HI]^6}{[H_2]^3[I_2]^3}](https://tex.z-dn.net/?f=%2841%29%5E3%3D%5Cfrac%7B%5BHI%5D%5E6%7D%7B%5BH_2%5D%5E3%5BI_2%5D%5E3%7D)
Now, dividing expression 1 by expression 2, we get:
![\frac{K_{c_1}}{K_{c_2}}=\left(\frac{\frac{[NH_3]^2}{[N_2][H_2]^3}}{\frac{[HI]^6}{[H_2]^3[l_2]^3}}\right)\\\\\\\frac{0.282}{68921}=\frac{[NH_3]^2[I_2]^3}{[N_2][HI]^6}](https://tex.z-dn.net/?f=%5Cfrac%7BK_%7Bc_1%7D%7D%7BK_%7Bc_2%7D%7D%3D%5Cleft%28%5Cfrac%7B%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D%7D%7B%5Cfrac%7B%5BHI%5D%5E6%7D%7B%5BH_2%5D%5E3%5Bl_2%5D%5E3%7D%7D%5Cright%29%5C%5C%5C%5C%5C%5C%5Cfrac%7B0.282%7D%7B68921%7D%3D%5Cfrac%7B%5BNH_3%5D%5E2%5BI_2%5D%5E3%7D%7B%5BN_2%5D%5BHI%5D%5E6%7D)
![\frac{[NH_3]^2[I_2]^3}{[N_2][HI]^6}=4.09\times 10^{-6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNH_3%5D%5E2%5BI_2%5D%5E3%7D%7B%5BN_2%5D%5BHI%5D%5E6%7D%3D4.09%5Ctimes%2010%5E%7B-6%7D)
The above expression is the expression for equilibrium constant of the total equation, which is:

Hence, the equilibrium constant for the total reaction is 
Answer:
M = 0.441 M
Explanation:
In this case, we have two solutions that involves the Manganese II cation;
We have Mn(CH₃COOH)₂ and MnSO₄
In both cases, the moles of Mn are the same in reaction as we can see here:
Mn(CH₃COO)₂ <-------> Mn²⁺ + 2CH₃COO⁻
MnSO₄ <------> Mn²⁺ + SO₄²⁻
Therefore, all we have to do is calculate the moles of Mn in both solutions, do the sum and then, calculate the concentration with the new volume:
moles of MnAce = 0.489 * 0.0283 = 0.0138 moles
moles MnSulf = 0.339 * 0.0125 = 0.0042 moles
the total moles are:
moles of Mn²⁺ = 0.0138 + 0.0042 = 0.018 moles
Finally the concentration: 12.5 + 28.3 = 40.8 mL or 0.0408 L
M = 0.018 / 0.0408
M = 0.441 M
This would be the final concentration of the manganese after the mixing of the two solutions