Gay-Lussac's law gives the relationship between pressure and temperature of a gas.
it states that for a fixed amount of gas of constant volume pressure is directly proportional to temperature.
P/T = k
where P - pressure, T - temperature and k - constant

where parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation.
temperature should be in the kelvin scale,
T1 = 22 °C + 273 = 295 K
substituting the values in the equation

T = 492 K
new temperature - 492 - 273 = 219 °C
Answer:
Contains DNA, Contains Ribosomes, Lacks a nucleus
Explanation:
Enthalpy is energy of bonds broken - energy of bonds formed. Here, the NH3 and O2 are broken and H2O and NO are formed. So the energy to break the NH3 bonds is 3 times the amount of energy it takes to break a N-H single bond (because there are three of them in a NH3 molecule) and then multiplied by 4 because there are four particles.
So the energy of the bonds broken is 12x the energy to break a N-H single bond plus 5x the amount of energy to break an O—O double bond (you don’t multiply this by anything because in each O2 molecule there is only one bond).
The energy of the bonds formed is 6*2 = 12 Times the amount of energy for a O-H single bond plus 4 times the amount of energy required to break a N—O double bond.
Subtract energy of bonds broken - energy of bonds formed and this is the change in enthalpy.
To know what type of bond it is, draw the Lewis structure.
The mole fraction of a product is the number of moles of the product divided by the total number of moles of the solution.
Here moles of methanol = 6.0 moles
Moles of solution = 6.0 moles of methanol + 3.0 moles of water = 9.0 moles of solution
Mole fraction of methanol = 6.0 / 9.0 = 0.67
Answer: 0.67