To solve this problem it is necessary to apply the concepts related to the continuity of fluids in a pipeline and apply Bernoulli's balance on the given speeds.
Our values are given as


From the continuity equations in pipes we have to

Where,
= Cross sectional Area at each section
= Flow Velocity at each section
Then replacing we have,



From Bernoulli equation we have that the change in the pressure is

![7.3*10^3 = \frac{1}{2} (1000)([ \frac{(1.25*10^{-2})^2 }{0.6*10^{-2})^2} v_1 ]^2-v_1^2)](https://tex.z-dn.net/?f=7.3%2A10%5E3%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%281000%29%28%5B%20%5Cfrac%7B%281.25%2A10%5E%7B-2%7D%29%5E2%20%7D%7B0.6%2A10%5E%7B-2%7D%29%5E2%7D%20v_1%20%5D%5E2-v_1%5E2%29)


Therefore the speed of flow in the first tube is 0.9m/s
Answer:
B. it increases
Explanation:
As shown in the table provided, the speed of sound in water (1493 m/s) is greater than the speed of sound in air (346 m/s).
Answer:

Explanation:
It says “Momentum before the collision is equal to momentum after the collision.” Elastic Collision formula is applied to calculate the mass or velocity of the elastic bodies.











