Answer:
chemical and electrical ( and sometimes nucelar)
Explanation:
Vanillin is the common name for 4-hydroxy-3-methoxy-benzaldehyde.
See attached figure for the structure.
Vanillin have 3 functional groups:
1) aldehyde group: R-HC=O, in which the carbon is double bonded to oxygen
2) phenolic hydroxide group: R-OH, were the hydroxyl group is bounded to a carbon from the benzene ring
3) ether group: R-O-R, were hydrogen is bounded through sigma bonds to carbons
Now for the hybridization we have:
The carbon atoms involved in the benzene ring and the red carbon atom (from the aldehyde group) have a <u>sp²</u> hybridization because they are involved in double bonds.
The carbon atom from the methoxy group (R-O-CH₃) and the blue oxygen's have a <u>sp³</u> hybridization because they are involved only in single bonds.
4 In the open chain, 5 in the cyclic. Just like glucose.
Answer:
1/360
Explanation:
let x = liters
molarity=moles of solute/liters of solution, 7.2=0.02/x or 7.2=(1/50)(1/x), 7.2(50)=(1/x), 360(x)=1, x=1/360
Answer:
a) 2.01 g
Explanation:
- Na₂CO₃ (s) + 2AgNO₃ (aq) → Ag₂CO₃ (s) + 2NaNO₃
First we <u>convert 0.0302 mol AgNO₃ to Na₂CO₃ moles</u>, in order to <em>calculate how many Na₂CO₃ moles reacted</em>:
- 0.0302 mol AgNO₃ *
= 0.0151 mol Na₂CO₃
So the remaining Na₂CO₃ moles are:
- 0.0340 - 0.0151 = 0.0189 moles Na₂CO₃
Finally we <u>convert Na₂CO₃ moles into grams</u>, using its <em>molar mass</em>:
- 0.0189 moles Na₂CO₃ * 106 g/mol = 2.003 g Na₂CO₃
The closest answer is option a).