Answer:
(a) 
(b) 
(c) K.E. = 21.168 J
(d) 
Explanation:
Given:
- mass of a block, M = 3.6 kg
- initial velocity of the block,

- constant downward acceleration,

That a constant upward acceleration of
is applied in the presence of gravity.
∴
- height through which the block falls, d = 4.2 m
(a)
Force by the cord on the block,



∴Work by the cord on the block,


We take -ve sign because the direction of force and the displacement are opposite to each other.

(b)
Force on the block due to gravity:

∵the gravity is naturally a constant and we cannot change it


∴Work by the gravity on the block,



(c)
Kinetic energy of the block will be equal to the net work done i.e. sum of the two works.
mathematically:


K.E. = 21.168 J
(d)
From the equation of motion:

putting the respective values:

is the speed when the block has fallen 4.2 meters.
The correct answer is C) becuse without certain medicine they will dieeeee
Answer:
≅50°
Explanation:
We have a bullet flying through the air with only gravity pulling it down, so let's use one of our kinematic equations:
Δx=V₀t+at²/2
And since we're using Δx, V₀ should really be the initial velocity in the x-direction. So:
Δx=(V₀cosθ)t+at²/2
Now luckily we are given everything we need to solve (or you found the info before posting here):
- Δx=760 m
- V₀=87 m/s
- t=13.6 s
- a=g=-9.8 m/s²; however, at 760 m, the acceleration of the bullet is 0 because it has already hit the ground at this point!
With that we can plug the values in to get:




The answer to this question is false
Answer:
Explanation:
still water speed is 50 m / 25.0 s = 2.00 m/s or 200 cm/s
In lane 1 the effective speed would be 201.2 cm/s
5000 cm / 201.2 cm/s = 24.85 s
The change is 25.00 - 24.85 = 0.15 s decrease in time
In lane 8, the effective speed would be 198.8 cm/s
5000 cm / 198.8 cm/s = 25.15 s
The change is 25.00 - 25.15 = 0.15 s increase in time