Answer:
v_f = 3 m/s
Explanation:
From work energy theorem;
W = K_f - K_i
Where;
K_f is final kinetic energy
K_i is initial kinetic energy
W is work done
K_f = ½mv_f²
K_i = ½mv_i²
Where v_f and v_i are final and initial velocities respectively
Thus;
W = ½mv_f² - ½mv_i²
We are given;
W = 150 J
m = 60 kg
v_i = 2 m/s
Thus;
150 = ½×60(v_f² - 2²)
150 = 30(v_f² - 4)
(v_f² - 4) = 150/30
(v_f² - 4) = 5
v_f² = 5 + 4
v_f² = 9
v_f = √9
v_f = 3 m/s
Answer:
Velocity
Explanation:
The slope of a position-time graph gives velocity of a moving object.
The ampere (symbol: A) is the SI base unit of electric current equal to one coulomb per second.
The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2 times 10–7 newton per meter of length.
Electric current is the time rate of change or displacement of electric charge.
One ampere represents the rate of 1 coulomb of charge per second.
The ampere is defined first (it is a base unit, along with the meter, the second, and the kilogram), without reference to the quantity of charge.
The unit of charge, the coulomb, is defined to be the amount of charge displaced by a one ampere current in the time of one second.
This is your answer friend. Hope it helps you.
Answer:
Betelgeuse is 640 light years away from earth.
Explanation:
A light-year is an astronomical unit to measure the distance the light travels in a calendar year.
If the light from a star takes 640 years to reach us, then that star its 640ly away from us.
Betelgeuse has been labeled as a Variant Star, which means that its brightness can fluctuate over the course of years, this has made difficult for astronomers to measure the exact distance of the star. Right now the star is estimated to be around 613 and 881ly away from earth, although, for the sake of your second question, we will take 640 years as our estimated value.
In 1380 (640 years ago) the Battle of Kulikovo took place. A battle of remarkable importance to Russian history, in which the Russian army, led by Prince Dmitry of Moscow, defeated the Mongol army, defining a turning point in the Mongol dominance, and setting the bases for what Russia is today.
Answer:
the high temperature needed to operate this refrigerator is C) 137.4° C
Explanation:
Hello!
The carnot refrigeration cycle is one in which a machine absorbs heat from an enclosure and expels it to the surroundings, the equation that defines the COP performance coefficient for this cycle is:

COP=performance coefficient =2.1
T1= Low temperature
T2=high temperature
Now use algebra to find the high temperature

If we replace the values:
note = remember that the temperature must be in absolute units, for which we must add 273.15 to the low temperature to find the temperature in Kelvin
T1 = 5 + 273.15 = 278.15K

In celsius
T2=410.60-273.15=137.4° C
the high temperature needed to operate this refrigerator is C) 137.4° C