Given gravitational potential energy when he's lifted is 2058 J.
Kinetic energy is transferred to the person.
Amount of kinetic energy the person has is -2058 J
velocity of person = 7.67 m/s².
<h3>
Explanation:</h3>
Given:
Weight of person = 70 kg
Lifted height = 3 m
1. Gravitational potential energy of a lifted person is equal to the work done.

Gravitational potential energy is equal to 2058 Joules.
2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.
3. Kinetic energy gained = Potential energy lost = 
Kinetic energy gained by the person = (-2058 kg.m/s²)
4. Velocity = ?
Kinetic energy magnitude= 
Solving for v, we get

The person will be going at a speed of 7.67 m/s².
The horizontal speed is going to be the cosine of the given speed, therefore, the horizontal speed is 19.15 m/s. To find the time, divide the 22 m distance by the velocity. This results in 1.131 seconds, which is in between C and D.
You have to add 1.7 and 2.2 together!
1.7+2.2=3.9μF
Answer:
attached below is the free body diagram of the missing illustration
Initial kinetic energy of the electron = 3 eV
Explanation:
The conclusion that can be drawn about the kinetic energy of the electron is

E
= initial kinetic energy of the electron
E
= -4 eV
E
= -1 eV
insert the values into the equation above
= -1 -(-4) eV
= -1 + 4 = 3 eV
There are no options given in respect to the question and so it is not possible to choose. I would answer this question based on my knowledge and hope it satisfies you. he form of radio active decay that would be most likely detected by you if it were happening in the room next to the one you are currently standing in is gamma.