1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksian1 [2.3K]
2 years ago
7

An elevator is pulled up by a cable with a force of 65,000 N. The upward acceleration of the elevator is 1.8 m/s/s. What is the

mass of the elevator?
a. 1.8 kg.
b. 1700 kg.
c. 54880 kg.
d. 5600 kg.
e. 36111 kg.
Physics
1 answer:
goblinko [34]2 years ago
6 0

Answer:

36111 kg

Explanation:

Given

Force = 65000N

Acceleration = 1.8m/s²

Required

Determine the mass of the elevator

This question will be answered using the following Force formula.

Force = Mass * Acceleration

Substitute values for Force and Acceleration

65000N = Mass * 1.8m/s²

Make Mass the subject

Mass = 65000N/1.8m/s²

Mass = 36111.11 kg

From the list of given options, option E answers the question.

You might be interested in
To view an interactive solution to a problem that is similar to this one, select Interactive Solution 7.24. A 0.0129-kg bullet i
ipn [44]

Answer:

t=0.42s

Explanation:

Here you have an inelastic collision. By the conservation of the momentum you have:

m_1v_1+m_2v_2=(m_1+m_2)v

m1: mass of the bullet

m2: wooden block mass

v1: velocity of the bullet

v2: velocity of the wooden block

v: velocity of bullet and wooden block after the collision.

By noticing that after the collision, both objects reach the same height from where the wooden block was dropped, you can assume that v is equal to the negative of v2. In other words:

m_1(-v_1)+m_2v_2=(m1+m2)(-v2)

Where you assumed that the negative direction is upward. By replacing and doing v2 the subject of the formula you get:

-(0.0129kg)(767m/s)+(1.17kg)v_2=(1.1829kg)(-v_2)\\\\v_2=4.20m/s

Now, with this information you can use the equation for the final speed of an accelerated motion and doing t the subject of the formula. IN other words:

v_2=v_o+gt\\\\t=\frac{v_2-v_o}{g}=\frac{4.2m/s-0m/s}{9.8m/s^2}=0.42s

hence, the time is t=0.42 s

4 0
2 years ago
What current is needed in the solenoid's wires?
marta [7]
Using Ampere's Law, the magnetic field produced inside this solenoid is given by
B = uo N I / h
where uo is the vacuum permeability, N is the number of turns in the solenoid and h is the length of the solenoid. Earth's magnetic field is around 50 microteslas in North America thus the current needed in the solenoid is
I = B h / (uo N) = (50 E-6 ) (4) / ((4 pi E-7)(6000) ) = 0.026 A
I = 26 mA
So you need a current of around 26 mA.
5 0
2 years ago
A 1.60 m cylindrical rod of diameter 0.550 cm is connected to a power supply that maintains a constant potential difference of 1
bija089 [108]

1.

Answer:

Part a)

\rho = 1.35 \times 10^{-5}

Part b)

\alpha = 1.12 \times 10^{-3}

Explanation:

Part a)

Length of the rod is 1.60 m

diameter = 0.550 cm

now if the current in the ammeter is given as

i = 18.7 A

V = 17.0 volts

now we will have

V = I R

17.0 = 18.7 R

R = 0.91 ohm

now we know that

R = \rho \frac{L}{A}

0.91 = \rho \frac{1.60}{\pi(0.275\times 10^{-2})^2}

\rho = 1.35 \times 10^{-5}

Part b)

Now at higher temperature we have

V = I R

17.0 = 17.3 R

R = 0.98 ohm

now we know that

R = \rho \frac{L}{A}

0.98 = \rho' \frac{1.60}{\pi(0.275\times 10^{-2})^2}

\rho' = 1.46 \times 10^{-5}

so we will have

\rho' = \rho(1 + \alpha \Delta T)

1.46 \times 10^{-5} = 1.35 \times 10^{-5}(1 + \alpha (92 - 20))

\alpha = 1.12 \times 10^{-3}

2.

Answer:

Part a)

i = 1.55 A

Part b)

v_d = 1.4 \times 10^{-4} m/s

Explanation:

Part a)

As we know that current density is defined as

j = \frac{i}{A}

now we have

i = jA

Now we have

j = 1.90 \times 10^6 A/m^2

A = \pi(\frac{1.02 \times 10^{-3}}{2})^2

so we will have

i = 1.55 A

Part b)

now we have

j = nev_d

so we have

n = 8.5 \times 10^{28}

e = 1.6 \times 10^{-19} C

so we have

1.90 \times 10^6 = (8.5 \times 10^{28})(1.6 \times 10^{-19})v_d

v_d = 1.4 \times 10^{-4} m/s

8 0
3 years ago
a car traveling at 30m/s notices an accident about 65m up the road. The car's brakes are capable of decelerating at a rate of 6.
uysha [10]
Yes because you would have at least 3 car spaces
4 0
3 years ago
if you use the compound pulley, you will need to pull twice the distance but with less force. the force you need is equal to one
algol13

Answer:

F= 25/2 = 12.5N

Explanation:

When you use a compound pulley the force required depends on the mechanical advantage of the compound pulley. This is known as rate of loss of distance or the ratio of the force to the load.

M.A = Effort distance /Load distance. OR M.A = Load/Effort

6 0
3 years ago
Other questions:
  • 50-g of hot water at 65 degree C is poured into a cavity in a very large block of ice at 0 degrees C. The final temperature of t
    6·1 answer
  • A mass weight of 120N is hung from two strings. what is the tension?
    15·2 answers
  • What is the function of the commutator in a motor?
    5·2 answers
  • How does the wavelength of a wave change when frequency decreases? when frequency increases?
    7·1 answer
  • When an atom is involved in a nuclear reaction:
    5·1 answer
  • A 0.45 m radius, 500 turn coil is rotated one-fourth of a revolution in 4.01 ms, originally having its plane perpendicular to a
    8·1 answer
  • A negative slope on the velocity vs. time graph indicates that the object is not accelerating​
    11·1 answer
  • Most of the stars in the milky way will end their lives as
    15·1 answer
  • elastic wire extend by 1.ocm when a load on 20g range from It, what additional load will it be required Cause the futher extensi
    7·1 answer
  • Consider the f(x) = cos(x-C) function shown in the figure in blue color, where 0 ≤ C ≤ 2π. What is the value of parameter C for
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!