Torque = r x F
|F| = mg = 60 * 10 N = 600 N ( assuming g ~ 10m/s^2)
distance of fulcrum = torque / Force = 90/600 m = .15 m.
It depends on "Potential Energy", the amount energy it could have, the amount depending on certain circumstances, like height or force. This was how traditional and some modern rollercoasters work. As the "conveyer belt" pulls you up, the higher you go, the more potential energy you have. Once you are falling down the hill, you are experiencing "Kinetic Energy". Hope it makes sence.
<h3><u>Answer;</u></h3>
electric potential
<h3><u>Explanation;</u></h3>
Electric potential is the electric potential energy per unit charge.
Mathematically; V =PE/q
Where; PE is the electric potential energy, V is the electric potential and q is the charge.
Electric potential is more commonly known as voltage. If you know the potential at a point, and you then place a charge at that point, the potential energy associated with that charge in that potential is simply the charge multiplied by the potential.
Answer:
The answer is A because the equation is KEi+PEi=KEf+PEf
i means initial (before) and f means final (after)
Answer:
C
Explanation:
V=1/p
By means of cross multiplication so by that we will have pv=1 which also implies p1v1=p2v2 coz boyles law states that the volume of a given mass of gas is inversely proportional to pressure provided that the temperature in kelvin remains constant