Answer:
F = GMmx/[√(a² + x²)]³
Explanation:
The force dF on the mass element dm of the ring due to the sphere of mass, m at a distance L from the mass element is
dF = GmdM/L²
Since the ring is symmetrical, the vertical components of this force cancel out leaving the horizontal components to add.
So, the horizontal components add from two symmetrically opposite mass elements dM,
Thus, the horizontal component of the force is
dF' = dFcosФ where Ф is the angle between L and the x axis
dF' = GmdMcosФ/L²
L² = a² + x² where a = radius of ring and x = distance of axis of ring from sphere.
L = √(a² + x²)
cosФ = x/L
dF' = GmdMcosФ/L²
dF' = GmdMx/L³
dF' = GmdMx/[√(a² + x²)]³
Integrating both sides we have
∫dF' = ∫GmdMx/[√(a² + x²)]³
∫dF' = Gm∫dMx/[√(a² + x²)]³ ∫dM = M
F = GmMx/[√(a² + x²)]³
F = GMmx/[√(a² + x²)]³
So, the force due to the sphere of mass m is
F = GMmx/[√(a² + x²)]³
Answer:
44.6 N
Explanation:
Draw a free body diagram of the block. There are four forces on the block:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
and applied force F pulling right 30° above horizontal.
Sum of forces in the y direction:
∑F = ma
N + F sin 30° − mg = 0
N = mg − F sin 30°
Sum of forces in the x direction:
∑F = ma
F cos 30° − Nμ = 0
F cos 30° = Nμ
N = F cos 30° / μ
Substitute:
mg − F sin 30° = F cos 30° / μ
mg = F sin 30° + (F cos 30° / μ)
Plug in values:
mg = 20 N sin 30° + (20 N cos 30° / 0.5)
mg = 44.6 N
Answer:
Intensity, 
Explanation:
Power of the light bulb, P = 40 W
Distance from screen, r = 1.7 m
Let I is the intensity of light incident on the screen. The power acting per unit area is called the intensity of the light. Its formula is given by :




So, the intensity of light is
.
Relative motion can best be defined as B<span> the motion of one object as it appears to another object.
An example is when you are in a car the car has the actual motion because it is the one moving but you are also moving because of relative motion.</span>