Answer is: not enough <span>colorless syrupy liquid.
</span>n(H₂SO₄) = 1,2 mol.
M(H₂SO₄) = 2Ar(H) + Ar(S) + 4Ar(O) · g/mol.
M(H₂SO₄) = 2·1 + 32 + 4·16 · g/mol.
M(H₂SO₄) = 98 g/mol.
m(H₂SO₄) = n(H₂SO₄) · M(H₂SO₄).
m(H₂SO₄) = 1,2 mol · 98 g/mol.
m(H₂SO₄) = 117,6 g needed.
100 g is less that 117,6 g.
Answer:
See explanation
Explanation:
When we talk about electrophilic substitution, we are talking about a substitution reaction in which the attacking agent is an electrophile. The electrophile attacks an electron rich area of a compound during the reaction.
The five membered furan ring is aromatic just as benzene. This aromatic structure is maintained during electrophilic substitution reaction. The attack of the electrophile generates a resonance stabilized intermediate whose canonical structures have been shown in the image attached.
pH is an important parameter for many reactions to take place in solution and in biological systems. It is related to the concentration of H⁺ ions through the following expression:
pH = 1/[H⁺] = -log [H⁺]
Wanting to know the pH of a solution is equivalent to knowing the amount of hydrogen ions present. But the pH scale is more convenient than the concentration scale because pH usually takes values between 0 and 14.
- When pH < 7 the solution is acid.
- When pH = 7 the solution is neutral (like pure water).
- When pH > 7 the solution is basic.
Answer:
B - (C , Al, P, Cl)
Explanation:
How I got this answer was by looking at my periodic table it shows you how much it contains by the Atomic number.
Atomic number on C (Carbon) is- 6
Atomic number on Al (Aluminum) is - 13
Atomic number on P (Phosphorus) is - 15
Atomic number on Cl (Chlorine) is - 17
Now it says least to greatest and the other options are wrong I did the work for you hope this helps :)) I also had this project you didnt ask but the answer for the The Lesson are {B E M S} which as the code numbers are gonna be -7494- Im glad to help if you need more help I will give you the other answers as well :) !
<span>a. 3.1 calories in heat were released by the burning candy bar sample
b. The energy value of the sample was 3.1 Cal/g
c.The total caloric content of the candy bar is 232.5 Calories, derived by multiplying the total mass of the candy bar by its fuel value per gram</span>