Answer:
The enthalpy of vaporization of water at 273 K and 1 bar = 44.9 KJ/mol
Explanation:
Enthalpy of vaporization of water at 273 K, ΔHvap(T₂) is given as;
ΔHvap(T₂) = ΔHvap(T₁) + ΔCp * (T₂ - T₁)
where ΔCp = molar heat capacity of gas - molar heat capacity of liquid
Therefore, ΔCp = (33.6 - 75.3) = -41.70 J/(mol K) = 0.0417 kJ/(molK)
substituting ΔCp = 0.0417 kJ/(mol K) in the initial formula
;
ΔHvap(T) = ΔHvap(T1) + ΔCp * (T₂ - T₁)
ΔHvap(T₂)= 40.7 kJ/mol + {-0.0417 kJ/(mol K) * (272 - 373 K)}
ΔHvap(T₂) = 44.9 kJ/mol
Therefore, enthalpy of vaporization of water at 273 K and 1 bar = 44.9kJ/mol
The answer is 59
the atomic mass is the number at the bottom so you've gotta round it to the nearest whole number<span />
Answer:
the last one is wrong
Explanation:
wrong : most of the mass of an atom comes from the electrons cloud
Answer:
B
Explanation:
962,320 J
230 nutritional Calories in Joules is 962,320 J
Explanation:
It is known that 1 gram contains 1000 milligrams. And, mathematically we can represent it as follows.
or 
So, when we have to convert grams into milligrams then we simply multiply the digit with 1000. And, if we have to convert a digit from milligrams to grams then we simply divide it by 1000.