What is the acceleration so due to gravity and horizontal force the acceleration will be A
Answer:
a) 1.25e15 kg
b) 4.17e20 J
c) 44.55 years
Explanation:
To find the volume you need to multiply 218 km * 25 km * 250 m (be careful with units), so the volume is 1.3625e12 m^3, if you multiply this value by the density you will obtain the mass, that is 1.25e15 kg.
To find the energy needed to melt the ice, you use the latent heat, in this case, it is 3.34e5 J/kg. Now you multiply this value by the mass, so you need 4.17e20 J to melt the iceberg.
The surface area of the iceberg is 545e7 m^2, so the ice absorbs 594e9 W, one W is one J/s, so in 12 hours the iceberg absorbs 2.56e16 J, so in 365 days absorbs 9.36e18 J. Now you just divide 4.17e20 J by the amount f energy per year, and obtain 44.55 years.
Answer:
a) The velocity of rock at 1 second, v = 9.8 m/s
b) The velocity of rock at 3 second, v = 29.4 m/s
c) The velocity of rock at 5.5 second, v = 53.9 m/s
Explanation:
Given data,
The rock is dropped from a bridge.
The initial velocity of the rock, u = 0
a) The velocity of rock at 1 second,
Using the first equation of motion
v = u + gt
v = 0 + 9.8 x 1
v = 9.8 m/s
b) The velocity of rock at 3 second,
v = u + gt
v = 0 + 9.8 x 3
v = 29.4 m/s
c) The velocity of rock at 5.5 second,
v = u + gt
v = 0 + 9.8 x 5.5
v = 53.9 m/s
Answer:
the period T of whole motion should be twice the value for half at he bottom so T is 0.2sec.
w is angular frequency
formula:2π/T
now k is spring constant
F/R-->mw²
putting values:70*(2π/0.2)²
=4.9x10⁶
so we can say that SHM is not affected by the amplitude of the bounce.