Answer:
(a) convex mirror
(b) virtual and magnified
(c) 23.3 cm
Explanation:
The having mirror is convex mirror.
distance of object, u = - 20 cm
magnification, m = 1.4
(a) As the image is magnified and virtual , so the mirror is convex in nature.
(b) The image is virtual and magnified.
(c) Let the distance of image is v.
Use the formula of magnification.

Use the mirror equation, let the focal length is f.

Radius of curvature, R = 2 f = 2 x 11.67 = 23.3 cm
Kinetic energy is defined as the energy of motion. On the other hand, potential energy is the energy of non-motion.
Hope that helped =)
Answer:
K.E = 0.0075 J
Explanation:
Given data:
Mass of the ball = 1.5 kg
radius, r = 50 cm = 0.5 m
Angular speed, ω = 12 rev/min = (12/60) rev/sec = 0.2 rev/sec
Now,
the kinetic energy is given as:
K.E = 
where,
I is the moment of inertia = mr²
on substituting the values, we get

or
K.E = 0.0075 J
Answer:
5 Km/h
Explanation:
From the question given above, the following data were obtained:
Distance travelled = 10 Km
Time = 2 hours
Speed =?
Speed is simply defined as the distance travelled per unit time. Mathematically, it can be represented as:
Speed = distance travelled /time.
With the above formula, we can obtain the speed at which the duck is travelling as follow:
Distance travelled = 10 Km
Time = 2 hours
Speed =?
Speed = distance travelled /time.
Speed = 10 / 2
Speed = 5 Km/h
Thus, the duck is travelling at a speed of 5 Km/h
Answer:
Featured snippet from the web
The atoms and molecules in it are in constant motion. The kinetic energy of such a body is the measure of its temperature. Potential energy is classified depending on the applicable restoring force. Gravitational potential energy – potential energy of an object which is associated with gravitational force