<span>Answer:
1st, identify the givens and the unknown - this will give you parameter of what concept and formula are you going to use.
Given: m= 1200kg v initial = 95km/hr v final = 0
2nd, focus on the units - in most cases units speak for the concept
the unit of the unknown is kcal, thus its the unit of energy or work
so, W = ?
3rd, provide the appropriate formula - give formula or equation that the given and the unknown are present
since W = delta K.E =delta P.E
W= 0.5m( vf^2 - vi^2) ---> best formula
4th, Substitute the given to the formula
since 1 Joule = 1Nm 1N = 1kgms^-2 1cal = 4.19 J
we express first 95 km/hr to m/s
95km/hr x 1000m/1km x 1hr/3600sec = 26.39 m/sec
W= 0.5(1200kg)[(0^2- (26.39m/sec)^2]
W=600 kg(0 - 696.43m^2/s^2)
W=600kg(-696.43m^2/s^2)
W=417859.3Nm or 417859.3 J
W = 417859.3 J x 1 cal /4.19 J
W = 99,727.7 cal or 99.728 kcal</span>
Answer: D. Density of uranium within nuclear fuel rods is insufficient to become explosive
Explanation: Nuclear power plants use the same fuel as nuclear bombs, i.e. radioactive Uranium-235 isotope. However, in a nuclear power plant, the energy is released more slowly unlike in a nuclear bomb. <em>The energy released is through nuclear fission, and radioactive decay occurs at the same rate as in nuclear bombs. therefore, option A, B</em><em> </em><em>and C are incorrect.</em>
The primary reason why nuclear chain reactions within power plants do NOT produce bomb-like explosions is because the uranium fuel rods used in electricity generation is not sufficiently enriched in Uranium-235 to produce a nuclear detonation. This is the same idea in option D which is the correct option.
<span>The particles through which compressional waves travel move in the same direction as the wave. This may be observed by fixing one end of a large spring and then compressing and extending the other end. The wave travels from one end to the other and the spring's parts move in the same direction.</span>
<span>A tri-fold brochure has two parallel folds, splitting the brochure into three sections. Even when printed on low-weight paper, tri-folds can stand up easily, which makes them a great choice for displaying at conventions. You can fold both folds inwards so that the left and right sections of the brochure sit on top of one another, or you can have one fold inwards and the other outwards, to create an accordion effect, which looks very attractive.</span>
Answer:
t_total = 23.757 s
Explanation:
This is a kinematics exercise.
Let's start by calculating the distance and has to reach the limit speed of
v = 18.8 m / s
v = v₀ + a t₁
the elevator starts with zero speed
v = a t₁
t₁ = v / a
t₁ = 18.8 / 2.40
t₁ = 7.833 s
in this time he runs
y₁ = v₀ t₁ + ½ a t₁²
y₁ = ½ a t₁²
y₁ = ½ 2.40 7.833²
y₁ = 73.627 m
This is the time and distance traveled until reaching the maximum speed, which will be constant throughout the rest of the trip.
x_total = x₁ + x₂
x₂ = x_total - x₁
x₂ = 373 - 73,627
x₂ = 299.373 m
this distance travels at constant speed,
v = x₂ / t₂
t₂ = x₂ / v
t₂ = 299.373 / 18.8
t₂ = 15.92 s
therefore the total travel time is
t_total = t₁ + t₂
t_total = 7.833 + 15.92
t_total = 23.757 s