Answer:
17 m/s
Explanation:
Using formula a = (v-u) /t
acceleration a = -1.5 m/s2
final velocity v = unknown
initial velocity u = 32 m/s
time t = 10s
-1.5 = (v-32)/10
-15 = v - 32
-15 + 32 = v
v = 17 m/s
Given:
Dy= 20 m
Vi = 5.0 m/s horizontally
A=9.81 m/s^2
Find:
Horizontal displacement
Solution:
D=ViT+(1/2)AT^2
Dy=(1/2)AT^2
T^2=Dy/(1/2)A
T=sqrt(Dy/(1/2)A)
T=sqrt(20/4.905)
T=2.0s
Dx=ViT
Dx=(5.0)(2.0)
Dx=10. meters
Answer:
0.8J
Explanation:
Given parameters:
Force = 20N
Compression = 0.08m
Unknown:
Spring constant = ?
Elastic potential energy = ?
Solution:
To solve this problem, we use the expression below:
F = k e
F is the force
k is the spring constant
e is the compression
20 = k x 0.08
k = 250N/m
Elastic potential energy;
EPE =
k e² =
x 250 x 0.08²
Elastic potential energy = 0.8J
Answer:
here
Explanation:
Copper is commonly used as an effective conductor in household appliances and in electrical equipment in general. Because of its low cost, most wires are copper-plated. You will often find electromagnet cores normally wrapped with copper wire
Ohms law = v= Ir
V= 0.02 x 4000 = 80v