First, an object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.
But what exactly is meant by the phrase unbalanced force? One force - the Earth's gravitational pull - exerts a downward force. The other force - the push of the table on an object.
Since these two forces are of equal magnitude and in opposite directions, they balance each other. An object is said to be at equilibrium. There is no unbalanced force acting upon the object and thus the object maintains its state of motion. When all the forces acting upon an object balance each other, the object will be at equilibrium; it will not accelerate.
Consider another example involving balanced forces - a person standing on the floor. There are two forces acting upon the person. The force of gravity exerts a downward force. The floor exerts an upward force.
Since these two forces are of equal magnitude and in opposite directions, they balance each other. The person is at equilibrium. There is no unbalanced force acting upon the person and thus the person maintains its state of motion.
Unbalanced Forces
Now consider a book sliding from left to right across a tabletop. Sometime in the prior history of the book, it may have been given a shove and set in motion from a rest position. Or perhaps it acquired its motion by sliding down an incline from an elevated position. Whatever the case, our focus is not upon the history of the book but rather upon the current situation of a book sliding to the right across a tabletop. The book is in motion and at the moment there is no one pushing it to the right.
The force of gravity pulling downward and the force of the table pushing upwards on the book are of equal magnitude and opposite directions. These two forces balance each other. Yet there is no force present to balance the force of friction. As the book moves to the right, friction acts to the left to slow the book down. There is an unbalanced force; and as such, the book changes its state of motion. The book is not at equilibrium and subsequently accelerates. Unbalanced forces cause accelerations. In this case, the unbalanced force is directed opposite the book's motion and will cause it to slow down.
In conclusion
To determine if the forces acting upon an object are balanced or unbalanced, an analysis must first be conducted to determine what forces are acting upon the object and in what direction. If two individual forces are of equal magnitude and opposite direction, then the forces are said to be balanced. An object is said to be acted upon by an unbalanced force only when there is an individual force that is not being balanced by a force of equal magnitude and in the opposite direction.
Hope all this help you to understand the topic of balance and unbalance forces
Answer:
im only 11 but By convention in standard cell notation, the anode is written on the left and the cathode is written on the right. So, in this cell: Zinc is the anode (solid zinc is oxidised). Silver is the cathode (silver ions are reduced).
Explanation:
<h3>
Answer:</h3>
13 g CO₂
<h3>
General Formulas and Concepts:</h3>
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
<u>Stoichiometry</u>
- Using Dimensional Analysis
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
<em>Identify variables</em>
[Given] 6.7 L O₂
[Solve] g O₂
<u>Step 2: Identify Conversions</u>
[STP] 22.4 L = 1 mol
[PT] Molar Mass of O: 16.00 g/mol
[PT] Molar Mass of C: 12.01 g/mol
Molar Mass of CO₂: 12.01 + 2(16.00) = 44.01 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
13.1637 g CO₂ ≈ 13 g CO₂
I think it would be useful because then a gas station would have to save gas, instead of selling it all. But, for this question Im not to sure. Is this a multiple choice question_
Answer:
We need 375 milliliters of 0.100 M NaHCO3 solution
Explanation:
Step 1: Data given
Initial molarity NaHCO3 = 0.100 M
Volume prepared solution = 750.0 mL
Molarity prepared solution = 0.05 M
Step 2: Calculate initial volume
C1*V1 = C2V2
⇒with C1 = the initial concentration = 0.100 M
⇒with V1 = The initial volume = TO BE DETERMINED
⇒with C2 = the new concentration = 0.0500M
⇒with v2 = the new volume = 750.0 mL = 0.750 L
0.100 M * V1 = 0.0500 M * 0.750 L
V1 = (0.0500M * 0.750L)/0.100 M
V1 = 0.375 L = 375 mL
We need 375 milliliters of 0.100 M NaHCO3 solution