This is an application of Boyle's law:
P₁V₁ = P₂V₂. we don't have to convert volume and pressure to standard forms. we can even use the pressure with mmHg
1 atm = 760 mmHg
V₂ = P₁V₁ / P₂ = 745 x 500 / 760 = 490 ml
Note that here we assume constant temperature
all of the above is the answer :)
Answer:
Volume = 30cm³
Explanation:
A block is a geometrical figure and its volume, -look at the figure-, follows the equation:
Volume = Width*Length*Height
As the measurements of the block are 5.00cm, 3.00cm and 2.00cm, the volume is:
Volume = 5.00cm*2.00cm*3.00cm
<h3>Volume = 30cm³</h3>
The volume of the gas will be decreased. Answer lies on the understanding of kinetic energy of particles and how particles occupy certain amount of space.
<span>I forgot to add: the answer is 50.91 difference in temperature. </span><span><span>
</span></span>
Answer:
2,2,3,3-tetrapropyloxirane
Explanation:
In this case, we have to know first the alkene that will react with the peroxyacid. So:
<u>What do we know about the unknown alkene? </u>
We know the product of the ozonolysis reaction (see figure 1). This reaction is an <u>oxidative rupture reaction</u>. Therefore, the double bond will be broken and we have to replace the carbons on each side of the double bond by oxygens. If
is the only product we will have a symmetric molecule in this case 4,5-dipropyloct-4-ene.
<u>What is the product with the peroxyacid?</u>
This compound in the presence of alkenes will produce <u>peroxides.</u> Therefore we have to put a peroxide group in the carbons where the double bond was placed. So, we will have as product <u>2,2,3,3-tetrapropyloxirane.</u> (see figure 2)