A pond of cement is more dense
The answer would be D because a chemical property is Burning is a chemical property and a chemical property is any of material's properties that becomes evident during or after a chemical reaction that is any quality that can be established only by changing a substance's chemical identity.
i hope i helped you out and i hope you did great and i am sorry if i am too late
Answer:
25.97oC
Explanation:
Heat lost by aluminum = heat gained by water
M(Al) x C(Al) x [ Temp(Al) – Temp(Al+H2O) ] = M(H2O) x C(H2O) x [ Temp(Al+H2O) – Temp(H2O) ]
Where M(Al) = 23.5g, C(Al) = specific heat capacity of aluminum = 0.900J/goC, Temp(Al) = 65.9oC, Temp(Al+H2O)= temperature of water and aluminum at equilibrium = ?, M(H2O) = 55.0g, C(H2O)= specific heat capacity of liquid water = 4.186J/goC
Let Temp(Al+H2O) = X
23.5 x 0.900 x (65.9-X) = 55.0 x 4.186 x (X-22.3)
21.15(65.9-X) = 230.23(X-22.3)
1393.785 - 21.15X = 230.23X – 5134.129
230.23X + 21.15X = 1393.785 + 5134.129
251.38X = 6527.909
X = 6527.909/251.38
X = 25.97oC
So, the final temperature of the water and aluminum is = 25.97oC
Answer:

Explanation:
The formula for efficiency is

Data:
Useful energy = 3 J
Energy input = 30 J
Calculation:

Answer is: K <span>be for the reaction at 375 K is 326.
</span>Chemical reaction: N₂(g) + 3H₂(g) ⇌ 2NH₃(g); ΔH = -92,22 kJ/mol.
T₁<span><span> = 298 K
</span>T</span>₂<span><span> = 375 K
</span><span>Δ<span>H = -92,22 kJ/mol = -92220 J/mol.
R = 8,314 J/K</span></span></span>·mol.<span>
K</span>₁ = 6,8·10⁵.<span>
K</span>₂ = ?The van’t Hoff equation: ln(K₂/K₁) = -ΔH/R(1/T₂ - 1/T₁).
ln(K₂/6,8·10⁵) = 92220 J/mol / 8,314 J/K·mol (1/375K - 1/298K).
ln(K₂/6,8·10⁵) = 11092,13 · (0,00266 - 0,00335).
ln(K₂/6,8·10⁵) = -7,64.
K₂/680000= 0,00048
K₂ = 326,4.