1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snezhnost [94]
3 years ago
8

Considering only (110), (1 1 0), (101), and (10 1 ) as the possible slip planes, calculate the stress at which a BCC single crys

tal will yield if the critical resolved shear stress is 50 MPa and the load is applied in the [100] direction.
Engineering
1 answer:
vredina [299]3 years ago
3 0

Solution :

i. Slip plane (1 1 0)

Slip direction -- [1 1 1]

Applied stress direction = ( 1 0 0 ]

τ = 50 MPa    ( Here slip direction must be perpendicular to slip plane)

τ = σ cos Φ cos λ

$\cos \phi = \frac{(1,0,0) \cdot (1,1,0)}{1 \times \sqrt2}$

       $=\frac{1}{\sqrt2 }$

$\cos \lambda = \frac{(1,0,0) \cdot (1,-1,1)}{1 \times \sqrt3}$

       $=\frac{1}{\sqrt3 }$

  τ = σ cos Φ cos λ

∴ $50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $

  σ = 122.47 MPa

ii. Slip plane  --- (1 1 0)

   Slip direction -- [1 1 1]

  $\cos \phi = \frac{(1, 0, 0) \cdot (1, -1, 0)}{1 \times \sqrt2} =\frac{1}{\sqrt2}$

   $\cos \lambda = \frac{(1, 0, 0) \cdot (1, 1, -1)}{1 \times \sqrt3} =\frac{1}{\sqrt3}$

 τ = σ cos Φ cos λ

∴ $50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $

  σ = 122.47 MPa

iii. Slip plane  --- (1 0 1)

    Slip direction --- [1 1 1]

$\cos \phi = \frac{(1, 0, 0) \cdot (1, 0, 1)}{1 \times \sqrt2} =\frac{1}{\sqrt2}$

   $\cos \lambda = \frac{(1, 0, 0) \cdot (1, 1, -1)}{1 \times \sqrt3} =\frac{1}{\sqrt3}$

τ = σ cos Φ cos λ

∴ $50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $

  σ = 122.47 MPa

iv. Slip plane -- (1 0 1)

    Slip direction  ---- [1 1 1]

$\cos \phi = \frac{(1, 0, 0) \cdot (1, 0, -1)}{1 \times \sqrt2}=\frac{1}{\sqrt2}$

$\cos \lambda = \frac{(1, 0, 0) \cdot (1, -1, 1)}{1 \times \sqrt3} =\frac{1}{\sqrt3}$

τ = σ cos Φ cos λ

∴ $50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $

  σ = 122.47 MPa

∴ (1, 0, -1). (1, -1, 1) = 1 + 0 - 1 = 0

You might be interested in
Assume the transistor is biased in the saturation region at VGS 4 V. (a) Calculate the ideal cutoff frequency. (b) Assume that t
insens350 [35]

Answer:

hello your question is incomplete attached below is the complete question and the detailed solution

Answer: A) 5.17 GHz

              B) 1.01 GHz

Explanation:

Assuming the transistor is biased and considering the two conditions as given in A and B attached below is a detailed solution to the given problem

4 0
3 years ago
CAD(computer-aided design) software and is used in__________and __________that show how to construct an object. Technical drawin
8_murik_8 [283]

Answer:

Plans; blueprints.

Explanation:

In Engineering, it is a common and standard practice to use drawings and models in the design and development of various tools or systems that are being used for proffering solutions to specific problems in different fields such as engineering, medicine, telecommunications and industries.

Hence, a design engineer make use of drawings such as pictorial drawings, sketches, or technical drawing to communicate ideas about a design to others, to record and retain informations (ideas) so that they're not forgotten and to analyze how different components of a design work together.

Technical drawing is mainly implemented with CAD (computer-aided design) software and is typically used in plans and blueprints that show how to construct an object.

Additionally, technical drawings show in detail how the pieces of something (object) relate to each other, as well as accurately illustrating the actual (true) shape and size of an object in the design and development process.

5 0
3 years ago
What are some possible reasons for the sudden development of the cell theory
11Alexandr11 [23.1K]

Answer:

microscope technology improved. Schleiden made his discovery, that caught the interest of other scientists, who went on to add new discoveries.

4 0
3 years ago
Steam heated at constant pressure in a steam generator enters the first stage of a supercritical reheat cycle at 28 MPa, 5208C.
algol [13]

This question is incomplete, the complete question is;

Steam heated at constant pressure in a steam generator enters the first stage of a supercritical reheat cycle at 28 MPa, 520°C. Steam exiting the first-stage turbine at 6 MPa is reheated at constant pressure to 500°C. Each turbine stage has an isentropic efficiency of 78% while the pump has an isentropic efficiency of 82%. Saturated liquid exits the condenser that operates at constant pressure of 6 kPa.

Determine the quality of the steam exiting the second stage of the turbine and the thermal efficiency.

Answer:

- the quality of the steam exiting the second stage of the turbine is 0.9329  

- the thermal efficiency is 36.05%  

Explanation:

get the properties of steam at pressure p1 = 28 MPa and temperature T2 = 520°C .

Specific enthalpy h1= 3192.3 kJ/kg

Specific entropy s1 = 5.9566 kJ/kg.K  

Process 1 to 2s is isentropic expansion process in the turbine

S1 = S2s

get the enthalpy at state 2s at pressure p2 = 6 MPa and S2s = 5.9566 kJ/kg.K

h2s = 2822.2 kJ/kg

get the enthalpy at state 2 using isentropic turbine efficiency of the turbine. nT1 = (h1 - h2) / (h1 - h2s)

0.78 = (3192.3 - h2) / (3192.3 - 2822.2)

h2 = 2903.6 kJ/kg

get the enthalpy at state 3 at pressure p2 = p3 = 6 MPa and T3 = 500°C

h3 = 3422.2 kJ/kg

s3 = 6.8803 kJ/kg.K

Process 3 to 4s is isentropic expansion process in the turbine

S3 = S4s

get the enthalpy at state 4s at pressure p4s = p4 = 6 kPa and S4s = 6.8803 kJ/kg.K

h4s = 2118.8 kJ/kg

get the enthalpy at state 4 using isentropic turbine efficiency of the turbine. nT2 = (h3 - h4) / (h3 - h4s)

0.78 = (3422.2 - h4) / ( 3422.2 - 2118.8 )

h4 = 2405.5 kJ/kg

get the properties at pressure, p5 = 6 kPa

h5 = hf

= 151.53 kJ/kg

v5 = Vf  

= 0.0010064 m³/kg  

get the enthalpy at state 6 using isentropic pump efficiency of the turbine, at

p6 = p1 = 28 MPa

np = v5( p6 - p5) / (h6 - h5)

0.82 =  ((0.0010064)( 28000 - 6)) / (h6 - 151.53)

h6 = 185.89 kJ/kg  

Now to find the quality of the steam at the exit of the second stage of the turbine

At stat4, p4 = 6kPa  

h4f = 151.53 kJ/kg

h4fg = 2415.9 kJ/kg  

h4 = h4f + x4h4fg

2405.5 = 151.53 + (x4 (2415.9))

x4 = 0.9329  

the quality of the steam exiting the second stage of the turbine is 0.9329  

Also to find the efficiency of the power plant, we use the following equation;

n = Wnet / Qin  

= (Wt1 + Wt2 - Wp) / (Q61 + Q23)

=  [(h1 - h2) + (h3 - h4) - (h6 - h5)] / [(h1 - h6) + (h3 - h2)]

[(3192.3 - 2903.6) + (3422.2 - 2405.5) - (185.89 - 151.53)] / [(3192.3 - 185.89) + (3422.2 - 2903.6)]

= 0.3605

n = 36.05%  

therefore the thermal efficiency is 36.05%  

3 0
3 years ago
Pls answer and I will give a like!
lubasha [3.4K]

Answer:

a

Explanation:

6 0
3 years ago
Other questions:
  • Does a thicker core make an electromagnet stronger?
    13·1 answer
  • A photograph of the NASA Apollo 16 Lunar Module (abbreviated by NASA as the LM is shown on the surface of the Moon. Such spacecr
    9·1 answer
  • Write down a transfer function of a stable system for which pure proportional feedback could drive the system unstable.
    11·1 answer
  • Determine an expression in standard form for the voltage gain VoVs. Hv(jω)=Vo(jω)Vi(jω)=R2R111+jωCR2 Hv(jω)=Vo(jω)Vi(jω)=−R2R111
    15·1 answer
  • What was the first prototype of the artificial tree like?
    5·1 answer
  • A 400 kg machine is placed at the mid-span of a 3.2-m simply supported steel (E = 200 x 10^9 N/m^2) beam. The machine is observe
    14·1 answer
  • Determine the specific weight of air when the temperature is 100∘F and the absolute pressure is 60 psi . The gas constant for th
    9·1 answer
  • Air enters the compressor of an ideal gas refrigeration cycle at 7∘C and 35 kPa and the turbine at 37∘C and 160 kPa. The mass fl
    8·1 answer
  • 1. Given: R= 25 , E = 100 V<br> Solve for I
    5·1 answer
  • It is the responsibility of every employee to ensure that tools are used ____ and____.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!