1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snezhnost [94]
2 years ago
8

Considering only (110), (1 1 0), (101), and (10 1 ) as the possible slip planes, calculate the stress at which a BCC single crys

tal will yield if the critical resolved shear stress is 50 MPa and the load is applied in the [100] direction.
Engineering
1 answer:
vredina [299]2 years ago
3 0

Solution :

i. Slip plane (1 1 0)

Slip direction -- [1 1 1]

Applied stress direction = ( 1 0 0 ]

τ = 50 MPa    ( Here slip direction must be perpendicular to slip plane)

τ = σ cos Φ cos λ

$\cos \phi = \frac{(1,0,0) \cdot (1,1,0)}{1 \times \sqrt2}$

       $=\frac{1}{\sqrt2 }$

$\cos \lambda = \frac{(1,0,0) \cdot (1,-1,1)}{1 \times \sqrt3}$

       $=\frac{1}{\sqrt3 }$

  τ = σ cos Φ cos λ

∴ $50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $

  σ = 122.47 MPa

ii. Slip plane  --- (1 1 0)

   Slip direction -- [1 1 1]

  $\cos \phi = \frac{(1, 0, 0) \cdot (1, -1, 0)}{1 \times \sqrt2} =\frac{1}{\sqrt2}$

   $\cos \lambda = \frac{(1, 0, 0) \cdot (1, 1, -1)}{1 \times \sqrt3} =\frac{1}{\sqrt3}$

 τ = σ cos Φ cos λ

∴ $50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $

  σ = 122.47 MPa

iii. Slip plane  --- (1 0 1)

    Slip direction --- [1 1 1]

$\cos \phi = \frac{(1, 0, 0) \cdot (1, 0, 1)}{1 \times \sqrt2} =\frac{1}{\sqrt2}$

   $\cos \lambda = \frac{(1, 0, 0) \cdot (1, 1, -1)}{1 \times \sqrt3} =\frac{1}{\sqrt3}$

τ = σ cos Φ cos λ

∴ $50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $

  σ = 122.47 MPa

iv. Slip plane -- (1 0 1)

    Slip direction  ---- [1 1 1]

$\cos \phi = \frac{(1, 0, 0) \cdot (1, 0, -1)}{1 \times \sqrt2}=\frac{1}{\sqrt2}$

$\cos \lambda = \frac{(1, 0, 0) \cdot (1, -1, 1)}{1 \times \sqrt3} =\frac{1}{\sqrt3}$

τ = σ cos Φ cos λ

∴ $50= \sigma \times \frac{1}{\sqrt2} \times \frac{1}{\sqrt3} $

  σ = 122.47 MPa

∴ (1, 0, -1). (1, -1, 1) = 1 + 0 - 1 = 0

You might be interested in
True or False: Stress can effectively be relieved through physical activity, getting enough rest and sleep, and relaxation techn
Neko [114]

Answer:

True

Explanation:

Actually this are some of the nitty gritty answers and ways to control or stip stress, lemme explain them you see stress most of the time may come from deep thoughts that are and are pushing you to the wall, and you in your state you as you react to that which is so demanding as it makes you tense,so if at you will incorporate physical activities like running, jogging or push ups the psychological tension in you is broken as you focus so much on the activities rather than the tension, then getting enough rest cools the mind and all your thoughts settle as in your brain starts to adapt to chilling and relaxation and enough sleep will actually make ones head to be at peace because if you lack enough sleep you might have an excruciating migraine when you are stressed up and finally relaxation techniques makes the body accept the situation and then you manouver out of it as you grow strongly.

Hope this will help!

7 0
3 years ago
Read 2 more answers
Applying the Entropy Balance: Closed Systems Five kg of carbon dioxide (CO2) gas undergoes a process in a well-insulated piston–
Mrrafil [7]

Answer:

a) the amount of energy produced in kJ/K is 0.73145 kJ/K

b) the amount of energy produced in kJ/K is 0.68975 kJ/K

The value for entropy production obtained using constant specific heats is approximately 6% higher than the value obtained when accounting explicitly for the variation in specific heats.

Explanation:

Draw the T-s diagram.

a)

C_p = 0.939 kJ/kg.K , m = 5 kg , T₂ = 520 K , T₁ = 280

R = [8.314 kJ / 44.01 kg.K] , P₂ = 20 bar , P₁ = 2 bar

Δs = m[c_p ln(\frac{T_2}{T_1}) - Rln(\frac{P_2}{P_1})]

Substitute all parameters in the equation

Δs = 5[(0.939) ln(\frac{520}{280}) - (\frac{8.314}{44.01})ln(\frac{20}{2})]

Δs = 5 kg × 0.14629 kJ/kg.K

    = 0.73145 kJ/K

b)

Δs = m[\frac{s^0(T_2) - s^0(T_1)}{M} - Rln(\frac{P_2}{P_1})]

Where T₁ = 280 K , s°(T₁) = 211.376 kJ/kmol.K

           T₂ = 520 K , s°(T₂) = 236.575 kJ/kmol.K

R = [8.314 kJ / 44.01 kg.K] , M = 44.01 kg.K , P₂ = 20 bar , P₁ = 2 bar

Δs = 5[\frac{236.575 - 211.376}{44.01} - (\frac{8.314}{44.01})ln(\frac{20}{2})]

    = 5 kg (0.13795 kJ/kg.K)

    = 0.68975 kJ/K

The value for entropy production obtained using constant specific heats is approximately 6% higher than the value obtained when accounting explicitly for the variation in specific heats.

7 0
3 years ago
I am having trouble understanding how I got these wrong on my test. Is there something I am missing with xor?
GuDViN [60]

Answer:

  your answer is correct

Explanation:

You have the correct mapping from inputs to outputs. The only thing your teacher may disagree with is the ordering of your inputs. They might be written more conventionally as ...

 A B Y

 0 0 1

 0 1 0

 1 0 0

 1 1 1

That is, your teacher may be looking for the pattern 1001 in the last column without paying attention to what you have written in column B.

8 0
3 years ago
The amount of phase shift between input and output signal is important when measuring ____ circuit​
svetoff [14.1K]

Answer:

The amount of phase shift between input and output signal is important when measuring a common emitter amplifier circuit​.

Explanation:

the amount of phase shift between input and output signal is important when measuring a common emitter amplifier circuit​

In signal processing, phase distortion is change in the shape of the waveform, that occurs when the phase shift introduced by a circuit is not directly proportional to frequency.

In a common emitter amplifier circuit​ there is an 180-degree phase shift between the input and output waveforms.

6 0
3 years ago
A long, horizontal, pressurized hot water pipe of 15cm diameter passes through a room where the air temperature is 24degree C. T
solmaris [256]

Answer:

Rate of heat transfer to the room air per meter of pipe length equals 521.99 W/m

Explanation:

Since it is given that the radiation losses from the pipe are negligible thus the only mode of heat transfer will be by convection.

We know that heat transfer by convection is given by

\dot{Q}=hA(T-T_{\infty })

where,

h = heat transfer coefficient = 10.45 W/m^{2}K (free convection in air)

A = Surface Area of the pipe

Applying the given values in the above formula we get

\dot{Q}=10.45\times \pi DL\times (130+273-(24+273))\\\\\frac{\dot{Q}}{L}=10.45\times 0.15\times \pi \times (130-24)\\\\\frac{\dot{Q}}{L}=521.99W/m

5 0
3 years ago
Other questions:
  • The steel water pipe has an inner diameter of 12 in. and a wall thickness of 0.25 in. If the valve A is closed and the water pre
    10·1 answer
  • During an experiment conducted in a room at 25°C, a laboratory assistant measures that a refrigerator that draws 2 kW of power h
    13·1 answer
  • Please read and answer each question carefully.
    9·1 answer
  • Calculate the number of vacancies per cubic meter for some metal, M, at 749°C. The energy for vacancy formation is 0.86 eV/atom,
    5·1 answer
  • what is the expected life 1 inch diameter bar machined from AISI 1020 CD Steel is subjected to alternating bending stress betwee
    9·1 answer
  • The Hubble Space Telescope is an optical imaging telescope with extremely good angular resolution. Someone discovers an object t
    13·1 answer
  • Estimate the luminosity of a 3 -solar-mass main-sequence star; of a 9 -solar-mass main-sequence star. Can you easily estimate th
    5·1 answer
  • Just need someone to talk to pls dont just use me for points
    5·1 answer
  • scrapers are used to haul dirt from a borrow pit to the cap of a landfill. the estimated cycle time for the scrapers is 9.5 minu
    14·1 answer
  • What subject is he......... now? Vietnamese.A. to learnB. learnC. learningD. learned
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!