Answer:
charge on each
Q1 = 2.06 ×
C
Q2 = 7.23 ×
C
when force were attractive
Q1 = 1.07 ×
C
Q2 = -1.39 ×
C
Explanation:
given data
total charge = 93.0 μC
apart distance r = 1.14 m
force exerted F = 10.3 N
to find out
What is the charge on each and What if the force were attractive
solution
we know that force is repulsive mean both sphere have same charge
so total charge on two non conducting sphere is
Q1 + Q2 = 93.0 μC = 93 ×
C
and
According to Coulomb's law force between two sphere is
Force F =
.........1
Q1Q2 = 
here F is force and r is apart distance and k is 9 ×
N-m²/C² put all value we get
Q1Q2 = 
Q1Q2 = 1.49 ×
C²
and
we have Q2 = 93 ×
C - Q1
put here value
Q1² - 93 ×
Q1 + 1.49 ×
= 0
solve we get
Q1 = 2.06 ×
C
and
Q1Q2 = 1.49 ×
2.06 ×
Q2 = 1.49 ×
Q2 = 7.23 ×
C
and
if force is attractive we get here
Q1Q2 = - 1.49 ×
C²
then
Q1² - 93 ×
Q1 - 1.49 ×
= 0
we get here
Q1 = 1.07 ×
C
and
Q1Q2 = - 1.49 ×
2.06 ×
Q2 = - 1.49 × 
Q2 = -1.39 ×
C
Answer:
Take whatever you weigh in pounds and divide by 2.205.
Explanation:
Because weight is a measure of the force you exert on the earth, with some simple manipulation of Newton's second law we can get your mass in kilograms. 2.205 is just a nice constant that does that for you, but the more in-depth version is that
F = ma
The equation for weight is thus
W = mg, where W is your weight in pounds, m is your mass, and g is the acceleration due to gravity (9.80 m/s^2)
Thus, your mass in kilograms is m = W / g.
Best way that I study is first get in a comfortable room. Get the material you are suppose to be studying and a blank note book. Go through what you think you know then take what you struggle with a write it in the notebook. After writing it a few times different ways find what helps you rember it the most.
Answer:
1. The automobile is traveling due east and is speeding up.
2. The car is traveling due east and is is slowing down.
3. The automobile is traveling due east at a constant speed.
4. The car is traveling due west and is slowing down.
5. The automobile is traveling due west and is speeding up.
6. The automobile is traveling due west at a constant speed.
7. The automobile is accelerating due east from rest.
8. The automobile is accelerating due west from rest.
Explanation:
The key to understanding this is:
When the acceleration and initial velocity of the automobile have the same sign (positive or negative) then the automobile is speeding up. Explained further, if acceleration and the initial velocity are both positive or they are both negative the automobile is speeding up but whenever they have opposite signs (that is acceleration is positive and initial velocity is negative or vice versa) the automobile is slowing down. When the acceleration is zero the automobile is maintaining a unform motion at a constant speed (the speed is not changing with time). The + or - sign indicates the direction of travel. In this case east is + and west is -. It is my pleasure answering this question. I hope you find it helpful. Thank you.
Answer:
ratio of tangential velocity of satellite b and a will be 0.707
Explanation:
We have given distance of satellite B from satellite A is twice
So 
Tangential speed of the satellite is given by
, G is gravitational constant. M is mass of satellite and r is distance from the earth
We have to find the ratio of tangential velocities of b and a
From the relation we can see that tangential velocity is inversely proportional to square root of distance from earth
So 



So ratio of tangential velocity of satellite b and a will be 0.707