Time it takes the projectile to hit the ground after being thrown up:
√h/1/2a
√8/(.5)(9.81)
√8/4.905
√1.630988787
= 1.277101714
= 1. 28
hope this helps :)
<h3>
Answer:</h3>
225 meters
<h3>
Explanation:</h3>
Acceleration is the rate of change in velocity of an object in motion.
In our case we are given;
Acceleration, a = 2.0 m/s²
Time, t = 15 s
We are required to find the length of the slope;
Assuming the student started at rest, then the initial velocity, V₀ is Zero.
<h3>Step 1: Calculate the final velocity, Vf</h3>
Using the equation of linear motion;
Vf = V₀ + at
Therefore;
Vf = 0 + (2 × 15)
= 30 m/s
Thus, the final velocity of the student is 30 m/s
<h3>Step 2: Calculate the length (displacement) of the slope </h3>
Using the other equation of linear motion;
S = 0.5 at + V₀t
We can calculate the length, S of the slope
That is;
S = (0.5 × 2 × 15² ) - (0 × 15)
= 225 m
Therefore, the length of the slope is 225 m
Answer:
5.33*10^-3 seconds
Explanation:
c = d/t
c = speed of light constant (3.0*10^5 km/s)
d = distance (1600 km)
t = ?
3.0*10^5 = 1600/t
t = 1600/3.0*10^5
t = 5.33*10^-3 seconds
I hope this helped! :)
Answer: Electromagnetic radiation
Explanation:
Electromagnetic radiation is a combination of oscillating electric and magnetic fields, which propagate through space carrying energy from one place to another.
To understand it better:
This radiation is spread thanks to the electromagnetic fields produced by moving electric charges and their sources can be natural or man-made.
It should be noted that the energy of electromagnetic radiation can vary and depending on its frequency it can be useful for various situations.
Answer:
14657.32 J
Explanation:
Given Parameters ;
Number of moles mono atomic gas A , n
1 = 4
.2 mol
Number of moles mono atomic gas B , n
2 = 3.2mol
Initial energy of gas A ,
K
A = 9500 J
Thermal energy given by gas A to gas B ,
Δ
K = 600
J
Gas constant
R =
8.314 J
/
molK
Let K
B be the initial energy of gas B.
Let T be the equilibrium temperature of the gas after mixing.
Then we can write the energy of gas A after mixing as
(3/2)n1RT = KA - ΔK
⟹ (3/2) x 4.2 x 8.314 x T = 9500 - 600
T = (8900 x 3 )/(2x4.2x8.314) = 382.32 K
Energy of the gas B after mixing can be written as
(3/2)n2RT = KB + ΔK
⟹ (3/2) x 3.2 x 8.314 x 382.32 = KB + 600
⟹ KB = [(3/2) x 3.2 x 8.314 x 382.32] - 600
⟹ KB = 14657.32 J