Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:

It is necessary to get the Reynold's number:

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

The overall heat transfer coefficient:

Here

Substituting values:

Compound machine is the answer
Answer:

Explanation:
The stress experimented by the circular bar is:
![\sigma = \left[\frac{2000\, lbf}{\frac{\pi}{4}\cdot (0.5\,in)^{2}}\right]\cdot \left(\frac{1\,kpsi}{1000\,psi} \right)](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Cleft%5B%5Cfrac%7B2000%5C%2C%20lbf%7D%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%5Ccdot%20%280.5%5C%2Cin%29%5E%7B2%7D%7D%5Cright%5D%5Ccdot%20%5Cleft%28%5Cfrac%7B1%5C%2Ckpsi%7D%7B1000%5C%2Cpsi%7D%20%5Cright%29)

The safety factor is:


Answer:
improper imput validation
Explanation:
Answer: Foundries
Explanation: Casting is the method of making the liquid material to be shaped into solid form by being poured in a mold and having a hollow cavity . The liquid then turns into a solid state and this is known as casting. the casting odd metal is usually carried out in different shapes by the help of furnaces ,gases, molds etc.This process is usually performed in the certain industries known as foundry.