Answer:
a. 9947 m
b. 99476 times
c. 2*10^11 molecules
Explanation:
a) To find the mean free path of the air molecules you use the following formula:

R: ideal gas constant = 8.3144 Pam^3/mol K
P: pressure = 1.5*10^{-6} Pa
T: temperature = 300K
N_A: Avogadros' constant = 2.022*10^{23}molecules/mol
d: diameter of the particle = 0.25nm=0.25*10^-9m
By replacing all these values you obtain:

b) If we assume that the molecule, at the average, is at the center of the chamber, the times the molecule will collide is:

c) By using the equation of the ideal gases you obtain:

Answer:
Explanation:
These include the 6010, 6011, 6012, 6013, 7014, 7024 and 7018 electrodes. 6010 electrodes deliver deep penetration and have the ability to “dig” through rust, oil, paint or dirt, making them popular among pipe welders.
Answer:
how many people were asked though
Explanation:
Answer:
Upper bounds 22.07 GPa
Lower bounds 17.59 GPa
Explanation:
Calculation to estimate the upper and lower bounds of the modulus of this composite.
First step is to calculate the maximum modulus for the combined material using this formula
Modulus of Elasticity for mixture
E= EcuVcu+EwVw
Let pug in the formula
E =( 110 x 0.40)+ (407 x 0.60)
E=44+244.2 GPa
E=288.2GPa
Second step is to calculate the combined specific gravity using this formula
p= pcuVcu+pwTw
Let plug in the formula
p = (19.3 x 0.40) + (8.9 x 0.60)
p=7.72+5.34
p=13.06
Now let calculate the UPPER BOUNDS and the LOWER BOUNDS of the Specific stiffness
UPPER BOUNDS
Using this formula
Upper bounds=E/p
Let plug in the formula
Upper bounds=288.2/13.06
Upper bounds=22.07 GPa
LOWER BOUNDS
Using this formula
Lower bounds=EcuVcu/pcu+EwVw/pw
Let plug in the formula
Lower bounds =( 110 x 0.40)/8.9+ (407 x 0.60)/19.3
Lower bounds=(44/8.9)+(244.2/19.3)
Lower bounds=4.94+12.65
Lower bounds=17.59 GPa
Therefore the Estimated upper and lower bounds of the modulus of this composite will be:
Upper bounds 22.07 GPa
Lower bounds 17.59 GPa
Answer:
See attachment for chart
Explanation:
The IPO chart implements he following algorithm
The expressions in bracket are typical examples
<u>Input</u>
Input Number (5, 4.2 or -1.2) --- This will be passed to the Processing module
<u>Processing</u>
Assign variable to the input number (x)
Calculate the square (x = 5 * 5)
Display the result (25) ----> This will be passed to the output module
<u>Output</u>
Display 25