By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1
Answer:
C. 14.55
Explanation:
12 x 10 = 120
120 divded by 10 is 12
so now we do the left side
7 x 3 = 21 divded by 10 is 2
so now we have 14
and the remaning area is 0.55
so 14.55
Answer:
Between 35°– 45°
Explanation:
In the vertical position, Point the flame in the direction of travel. Keep the flame tip at the correct height above the base metal. An angle of 35°–45° should be maintained between the torch tip and the base metal. This angle may be varied up or down to heat or cool the weld pool if it is too narrow or too wide