Answer:
1. 
2. 
Explanation:
1.
Given:
- height of the window pane,

- width of the window pane,

- thickness of the pane,

- thermal conductivity of the glass pane,

- temperature of the inner surface,

- temperature of the outer surface,

<u>According to the Fourier's law the rate of heat transfer is given as:</u>

here:
A = area through which the heat transfer occurs = 
dT = temperature difference across the thickness of the surface = 
dx = t = thickness normal to the surface = 


2.
- air spacing between two glass panes,

- area of each glass pane,

- thermal conductivity of air,

- temperature difference between the surfaces,

<u>Assuming layered transfer of heat through the air and the air between the glasses is always still:</u>



Answer:
Using the above algorithm matches one pair of Ghostbuster and Ghost. On each side of the line formed by the pairing, the number of Ghostbusters and Ghosts are the same, so use the algorithm recursively on each side of the line to find pairings. The worst case is when, after each iteration, one side of the line contains no Ghostbusters or Ghosts. Then, we need n/2 total iterations to find pairings, giving us an P(
)- time algorithm.
Scientific notation is another way to write a number. In scientific notation, the letter E is used to mean "10 to the power of." For example, 1.314E+1 means 1.314 * 101 which is 13.14 . Scientific notation is merely a format used for input and output.
Answer:
number of pulses produced = 162 pulses
Explanation:
give data
radius = 50 mm
encoder produces = 256 pulses per revolution
linear displacement = 200 mm
solution
first we consider here roll shaft encoder on the flat surface without any slipping
we get here now circumference that is
circumference = 2 π r .........1
circumference = 2 × π × 50
circumference = 314.16 mm
so now we get number of pulses produced
number of pulses produced =
× No of pulses per revolution .................2
number of pulses produced =
× 256
number of pulses produced = 162 pulses