<span>The electron is a subatomic particle, symbol e− or β−, with a negative elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron has a mass that is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum of a half-integer value in units of ħ, which means that it is a fermion. Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all matter, electrons have properties of both particles and waves, and so can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a higher De Broglie wavelength for typical energies. Hope this HELPS :D</span>
v initial = 0m/s
v final = 40m/s
t = 5s
d = ?
The kinematic equation which relates these quantities:
d = 1/2(vinitial + vfinal)t
d = 0.5(0+40)(5)
d = 100m
The relationship between the two is that air temperature changes the air pressure. For example, as the air warms up the molecules in the air become more active and they use up more individual space even though there is the same<span> number of molecules. This causes an </span>increase<span> in the air pressure.</span>
Nitrogen isotopes don't have a charge.