Answer:
The correct answer is "2524 W".
Explanation:
The given values are:
Ia = 20 A
Ea = 103 V
Ra = 0.19 Ω
La = 4 mH
According to KVL,
⇒ 
On substituting the given values in the above equation, we get
⇒ 
⇒ 
⇒ 
Now,
The average power flow into the converter will be:
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
Answer:
Explanation:
Given that,
The volume of the balloon is
V = 440 × 10³ m³
Buoyant force F?
Given the density of the surrounding to be 2.58 kg/m³
ρ = 2.58 kg/m³
The buoyant force is the weight of water displaced and it is calculated using
F_b = ρVg
Where
F_b is buoyant force
ρ is density
V is the volume of the liquid displace.
g is the acceleration due to gravity
Then,
F_b = ρVg
F_b = 2.58 × 440 × 10³ × 9.81
F_b = 1.1 × 10^7 N
Answer:
1800 J
Explanation:
Energy is conserved, so the maximum kinetic energy equals the change in gravitational energy.
the perpendicular component will be = Wy
Wy = w * cos 42.34 = 48.11 N x cos 42.34 = 35.54 N
Answer:
2.84403 seconds
2.91483 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
It takes 2.84403 seconds to reach the highest point

The ball will travel 39.67431+2 = 41.67431 m while going down to the ground

The ball takes 2.91483 seconds to hit the ground after it reaches its highest point.