Answer:
W = (F1 - mg sin θ) L, W = -μ mg cos θ L
Explanation:
Let's use Newton's second law to find the friction force. In these problems the x axis is taken parallel to the plane and the y axis perpendicular to the plane
Y Axis
N -
=
N = W_{y}
X axis
F1 - fr - Wₓ = 0
fr = F1 - Wₓ
Let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
We substitute
fr = F1 - W sin θ
Work is defined by
W = F .dx
W = F dx cos θ
The friction force is parallel to the plane in the negative direction and the displacement is positive along the plane, so the Angle is 180º and the cos θ= -1
W = -fr x
W = (F1 - mg sin θ) L
Another way to calculate is
fr = μ N
fr = μ W cos θ
the work is
W = -μ mg cos θ L
Answer: I believe is A
Explanation: days are shorter in the winter
Explanation:
It is given that,
When a high-energy proton or pion traveling near the speed of light collides with a nucleus, 
Speed of light, 
Let t is the time interval required for the strong interaction to occur. The speed is given by :




So, the time interval required for the strong interaction to occur is
. Hence, this is the required solution.
The things that a scientist should consider while observing
the force is the environmental conditions,the force that is expected to act on
the dam, the means to contain that force,
and compare different types of designs in accordance with the location
of the dam
3 protons should be your answer