Answer is: there are 3.011·10²³ atoms of calcium.
n(Ca) = 0.50 mol; amount of substance(calcium).
Na = 6.022·10²³ 1/mol; Avogadro's constant or number.
N(Ca) = n(Ca) · Na.
N(Ca) = 0.50 mol · 6.022·10²³ 1/mol.
N(Ca) = 3.011·10²³; number of calcium atoms.
The mole is an SI unit which measures the number of particles in substance. One mole is equal to <span><span>6.022</span></span>·<span><span><span>10</span></span></span>²³<span> atoms.</span>
Answer:
e) The activation energy of the reverse reaction is greater than that of the forward reaction.
Explanation:
- Activation energy is the minimum amount of energy that is required by the reactants to start a reaction.
- An exothermic reaction is a reaction that releases heat energy to the surrounding while an endothermic reactions is a reaction that absorbs heat from the surrounding.
- <em><u>In reversible reactions, when the forward reaction is exothermic it means the reverse reaction will be endothermic, therefore the reverse reaction will have a higher activation energy than the forward reaction.</u></em> The activation energy of the reverse reaction will be the sum of the enthalpy and the activation energy of the forward reaction.
Answer:
1.99 x 10⁻¹⁸J
Explanation:
Given parameters:
Frequency of the wave = 3 x 10¹⁵Hz
Unknown:
Energy of the photon = ?
Solution:
To solve this problem, we use the expression below;
E = hf
Where E is the energy, h is the Planck's constant and f is the frequency
Now insert the parameters and solve for E;
E = 6.63 x 10⁻³⁴ x 3 x 10¹⁵ = 19.9 x 10⁻¹⁹J or 1.99 x 10⁻¹⁸J
<span>The choices for this question can be found elsewhere and as follows:
Silver is a transition metal with electrons in the d shell.
Silver atoms have 47 protons in their nuclei.
Silver atoms commonly form ions with a +1 charge.
I think the correct answer is the last option. The least reliable information would be that s</span>ilver atoms commonly form ions with a +1 charge.