Answer:
If you mix equal amounts of a strong acid and a strong base, the two chemicals essentially cancel each other out and produce a salt and water. Mixing equal amounts of a strong acid with a strong base also produces a neutral pH (pH = 7) solution.
Answer:
119.7 mL.
Explanation:
- From the general law of ideal gases:
<em>PV = nRT.</em>
where, P is the pressure of the gas.
V is the volume of the container.
n is the no. of moles of the gas.
R is the general gas constant.
T is the temperature of the gas (K).
- For the same no. of moles of the gas at two different (P, V, and T):
<em>P₁V₁/T₁ = P₂V₂/T₂.</em>
- P₁ = 100.0 mmHg, V₁ = 1000.0 mL, T₁ = 23°C + 273 = 296 K.
- P₂ = 1.0 atm = 760.0 mmHg (standard P), V₂ = ??? mL, T₂ = 0.0°C + 273 = 273.0 K (standard T).
<em>∴ V₂ = (P₁V₁T₂)/(T₁P₂) </em>= (100.0 mmHg)(1000.0 mL)(273.0 K)/(296 K)(760.0 mmHg) = 121.4 <em>mL.</em>
Most of the surface of the earth is covered with water and looks blue from space.
Answer:
The correct option is: When the amount of acid and base are equal
Explanation:
Titration is an analytic method that is used to determine the concentration of an<em> unknown solution</em>, called <em>titrand</em>.
In this method, standard solution of known concentration, called <em>titrant</em>, is taken in the burette and added drop-wise to the titrand solution in the flask, until the endpoint is reached.
In case of an acid-base titration, a <em>pH indicator</em> is used, which changes the color of the solution when the endpoint is reached.
<u>The </u><u>endpoint</u><u> indicates the </u><u>equivalence point</u><u> of an acid-base titration, where the </u><em><u>concentration of the acid and base is equal</u></em><u>. </u>
<u>Therefore, the </u><u>correct option</u><u> is: </u><u>When the amount of acid and base are equal</u>
Answer:
Its 1s22s22p63s23p1 ik it looks a lil goofy but i think its right
Explanation: