The residential end-use sector has the largest seasonal variance, with significant spikes in demand every summer and winter. Virtually all homes that have air conditioning use electricity as the main source of cooling in the summer, while winter heating needs are met by a variety of fuels. Some homes use electric resistance heating and electric heat pumps, but even homes with other heating fuels such as natural gas or fuel oil still use some electricity to power furnace fans, boiler circulation pumps, and compressors.
The commercial sector experiences less variance in electricity use, although it shows a noticeable increase in the summer and a slight increase in the winter. Compared to the residential sector, a smaller portion of commercial sector energy consumption is devoted to heating, cooling, and ventilation. However, other energy fuels beyond electricity can be used in the commercial sector to meet both heating and cooling needs. For example, some commercial buildings use natural gas-fired chillers for cooling.
The industrial sector's demand for electricity is relatively flat (with just a slight increase in the summer) because a much smaller portion of its energy consumption (electric and otherwise) is used for heating and cooling. Economic variables generally play a larger role in industrial energy use than weather-related factors. However, seasonal changes can affect industrial activity. For example, in the refining industry, different seasonal slates of petroleum products as well as different seasonal processes may affect electricity needs.
Answer:
1) non equilibrium
mass movement
unsaturated solution
2)equilibrium phase change
Heat of vaporization
condensation
heat of fusion
normal boiling point
vapor pressure
3) equilibrium reaction
saturated solution
Ksp
solubility
Ka
Explanation:
Nonequilibrium processes are those processes that are irreversible. They often lead to an increase in entropy of the system.
In chemical systems, a state of equilibrium is said to have been attained when the rate of the forward process equals the rate of the reverse process. This is true for both chemical reaction and phase changes. A state of equilibrium connotes a constancy in physical properties of a system over a period of time.
Answer:
Gallium-72
Explanation:
The elements are identified by the number of protons of the atom, which is its atomic number.
In this case the number of protons 39 (atomic number 39) permit you to identify the element as gallium.
Now, to identify the isotope you tell the name of the element and add the mass number.
The mass number is the sum of the protons and the neutrons
In this case, the number of neutrons is the original 39 plus the 2 added suddenly, i.e. 39 + 2 = 41, so the mass number is 31 + 41 = 72
Therefore, the isotope is gallium - 72.
For one mole of hydrogen, H, the atomic mass is 1 g per mole. Hydrogen contains 1 proton and zero neuton. A neutral atom of hydrigen also contains 1 electron.