Electrophiles are reagents attracted to electrons.
Electrophiles tend to be electron-deficient and carry partial positive charges. They are attracted to species with lone pairs of electrons. For example, protons
have no electrons and tend to share ones with other species, hence behaving as electrophiles in aqueous reactions. In the reaction between
and ammonia
, protons would be attracted to lone electron pairs on nitrogen atoms in ammonia molecules, which carry partial positive charges.
The Lewis Acid-base theory define Acids as species that accept electron pairs in a particular acid-base reaction. Electrophiles, by definition, tend to accept electrons. Lewis acids thus behaves as electrophiles in acid-base reactions. In the previous example,
demonstrates acidic behavior and can be inferred as an electrophile.
Answer: The weight/weight % or percent by mass of the solute is 5.41 %.
Explanation:
Mass of the sodium sulfate,w = 9.74 g
Volume of the water = 165 mL
Density of the water = 1 g/mL

Mass of the water =
Mass of the solution, W:
Mass of solute + Mass of solvent =9.47 g + 165 g=174.47 g

The weight/weight % or percent by mass of the solute is 5.41 %.
Answer:
For me
Explanation:
It's Cu because other compound contains negative radicals
Answer:
1. Main sequence stars have different masses. The common characteristic they have is their source of energy. They burn fuel in their core through the process of fusing hydrogen atoms into helium.
2. Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K.
3. Supergiants develop when massive main-sequence stars run out of hydrogen in their cores.
4. a supernova occur When the pressure drops low enough in a massive star, gravity suddenly takes over and the star collapses in just seconds. This collapse produces the explosion.
5. when a star has reached the end of its life and explodes in a brilliant burst of light
Explanation:
Answer:
a) 1.61 mol
b) Al is limiting reactant
c) HBr is in excess
Explanation:
Given data:
Moles of Al = 3.22 mol
Moles of HBr = 4.96 mol
Moles of H₂ formed = ?
What is limiting reactant =
What is excess reactant = ?
Solution:
Chemical equation:
2Al + 2HBr → 2AlBr + H₂
Now we will compare the moles:
Al : H₂
2 : 1
3.22 : 1/2×3.22 = 1.61 mol
HBr : H₂
2 : 1
4.96 : 1/2×4.96 = 2.48 mol
The number of moles of H₂ produced by Al are less it will be limiting reactant while HBr is present in excess.
Moles of H₂ :
Number of moles of H₂ = 1.61 mol