1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pickupchik [31]
3 years ago
11

How did water get from the ocean to your water faucet?

Physics
2 answers:
Semmy [17]3 years ago
3 0

Answer:

lol im pretty sure pipes and nice pic of lil darkie

Explanation:

2+2=4

mart [117]3 years ago
3 0

Answer: dude i love lil darkie

Explanation:

You might be interested in
1. At a location in Europe, it is necessary to supply 1000 kW of 60-Hz power. Only power sources available operate at 50 Hz. It
Klio2033 [76]

Answer:

Explanation:

From the given information:

The speed of a synchronous motor in relation to its frequency can be represented with the formula:

n_{sm}= \dfrac{120f_{se}}{P}

where,

the electrical frequency f_{se} is measured in Hz

the number of poles = P

For us to estimate the number of poles to have 50 Hz - 60 Hz Power, then we need to relate the frequencies of the above equation.

i.e

\dfrac{120(50 \ Hz)}{P_1}= \dfrac{120( 60 \Hz)}{P_2} \\ \\ \dfrac{6000 \ Hz}{P_1}= \dfrac{7200 \ Hz}{P_2} \\ \\ \dfrac{P_2}{P_1}=\dfrac{7200}{6000} \\ \\ \\ \dfrac{P_2}{P_1}= \dfrac{12}{10}

Thus, we can conclude that 10 poles synchronous motor is attached with 12 poles synchronous generator in order to convert 50 Hz to 60 Hz power.

3 0
3 years ago
Wilbur ran 1-kilometer. Then he ran 500 meters. How many meters did Wilbur run all together?
Blababa [14]
The answer is B 1,500 meters since 1 kilometer to meters is 1,000 and u add the 500
8 0
3 years ago
Let surface S be the boundary of the solid object enclosed by x^2+z^2=4, x+y=6, x=0, y=0, and z=0. and, let f(x,y,z)=(3x)i+(x+y+
babunello [35]

a. I've attached a plot of the surface. Each face is parameterized by

• \mathbf s_1(x,y)=x\,\mathbf i+y\,\mathbf j with 0\le x\le2 and 0\le y\le6-x;

• \mathbf s_2(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2;

• \mathbf s_3(y,z)=y\,\mathbf j+z\,\mathbf k with 0\le y\le 6 and 0\le z\le2;

• \mathbf s_4(u,v)=u\cos v\,\mathbf i+(6-u\cos v)\,\mathbf j+u\sin v\,\mathbf k with 0\le u\le2 and 0\le v\le\frac\pi2; and

• \mathbf s_5(u,y)=2\cos u\,\mathbf i+y\,\mathbf j+2\sin u\,\mathbf k with 0\le u\le\frac\pi2 and 0\le y\le6-2\cos u.

b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.

\mathbf n_1=\dfrac{\partial\mathbf s_1}{\partial y}\times\dfrac{\partial\mathbf s_1}{\partial x}=-\mathbf k

\mathbf n_2=\dfrac{\partial\mathbf s_2}{\partial u}\times\dfrac{\partial\mathbf s_2}{\partial v}=-u\,\mathbf j

\mathbf n_3=\dfrac{\partial\mathbf s_3}{\partial z}\times\dfrac{\partial\mathbf s_3}{\partial y}=-\mathbf i

\mathbf n_4=\dfrac{\partial\mathbf s_4}{\partial v}\times\dfrac{\partial\mathbf s_4}{\partial u}=u\,\mathbf i+u\,\mathbf j

\mathbf n_5=\dfrac{\partial\mathbf s_5}{\partial y}\times\dfrac{\partial\mathbf s_5}{\partial u}=2\cos u\,\mathbf i+2\sin u\,\mathbf k

Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.

\displaystyle\iint_{S_1}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{6-x}f(x,y,0)\cdot\mathbf n_1\,\mathrm dy\,\mathrm dx

=\displaystyle\int_0^2\int_0^{6-x}0\,\mathrm dy\,\mathrm dx=0

\displaystyle\iint_{S_2}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,0,u\sin v)\cdot\mathbf n_2\,\mathrm dv\,\mathrm du

\displaystyle=\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=-8

\displaystyle\iint_{S_3}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^6\mathbf f(0,y,z)\cdot\mathbf n_3\,\mathrm dy\,\mathrm dz

=\displaystyle\int_0^2\int_0^60\,\mathrm dy\,\mathrm dz=0

\displaystyle\iint_{S_4}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^2\int_0^{\frac\pi2}\mathbf f(u\cos v,6-u\cos v,u\sin v)\cdot\mathbf n_4\,\mathrm dv\,\mathrm du

=\displaystyle\int_0^2\int_0^{\frac\pi2}-u^2(2\sin v+\cos v)\,\mathrm dv\,\mathrm du=\frac{40}3+6\pi

\displaystyle\iint_{S_5}\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\int_0^{\frac\pi2}\int_0^{6-2\cos u}\mathbf f(2\cos u,y,2\sin u)\cdot\mathbf n_5\,\mathrm dy\,\mathrm du

=\displaystyle\int_0^{\frac\pi2}\int_0^{6-2\cos u}12\,\mathrm dy\,\mathrm du=36\pi-24

c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.

Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_R\mathrm{div}\mathbf f(x,y,z)\,\mathrm dV

where <em>R</em> is the interior of <em>S</em>. We have

\mathrm{div}\mathbf f(x,y,z)=\dfrac{\partial(3x)}{\partial x}+\dfrac{\partial(x+y+2z)}{\partial y}+\dfrac{\partial(3z)}{\partial z}=7

The integral is easily computed in cylindrical coordinates:

\begin{cases}x(r,t)=r\cos t\\y(r,t)=6-r\cos t\\z(r,t)=r\sin t\end{cases},0\le r\le 2,0\le t\le\dfrac\pi2

\displaystyle\int_0^2\int_0^{\frac\pi2}\int_0^{6-r\cos t}7r\,\mathrm dy\,\mathrm dt\,\mathrm dr=42\pi-\frac{56}3

as expected.

4 0
2 years ago
Which of the following is located in the temperature climate zone?
barxatty [35]
The correct answer is C. Taiga hope it helps ( :
5 0
3 years ago
​A piston–cylinder assembly contains 5.0 kg of air, initially at 2.0 bar, 30 oC. The air undergoes a process to a state where th
vlada-n [284]

Answer:

Explanation:

The process is isothermic,  as P V = constant .

work done = 2.303 n RT log P₁ / P₂

= 2.303 x 5 / 29 x 8.3 x 303  log 2 / 1 kJ

= 300.5k J

This energy in work done by the gas will come fro heat supplied as internal energy is constant due to constant temperature.

heat supplied  = 300.5k J

specific volume is volume per unit mass

v / m

pv = n RT

pv  = m / M  RT

v / m = RT / p M

specific volume = RT / p M

option B is correct.

5 0
3 years ago
Other questions:
  • An object of mass m slides down an incline with angle 0.
    6·2 answers
  • A 3.0 g aluminum foil ball with a charge of 3.0×10−9C hangs freely from a 1.4 m-long thread. What angle with the vertical the eq
    12·1 answer
  • A crane raises a crate with a mass of 150 kg to a height of 20 m. Given that
    6·1 answer
  • A wave on a string is described by D(x,t)= (2.00cm)sin[(12.57rad/m)x−(638rad/s)t], where x is in m and t is in s. The linear den
    9·1 answer
  • Physics/Math
    13·1 answer
  • What makes the id different from the superego?
    10·1 answer
  • A 0.800-kg ball is tied to the end of a string 1.60 m long and swung in a vertical circle. (a)During one complete circle, starti
    7·1 answer
  • What does amplitude mean
    10·1 answer
  • How to solve period per loop
    14·1 answer
  • Please help 30 points
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!