1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna [14]
3 years ago
8

Rings of dust and icy particles are found around which planets? a. all planets which have moons associated with them b. only Sat

urn c. all for terrestrial planets d. all four jovian planets.
Physics
1 answer:
lisov135 [29]3 years ago
5 0

Answer:

d. all four jovian planets.

Explanation:

The Jovian planets are as follows -

URANUS , SATURN , JUPITER, and NEPTUNE .  

All these four jovian planets are having the rings , and the rings are made up of infinite number of small pieces of the ice and the rock .

Hence ,  

These planets are comparatively small and dense cores surrounded by massive layers of gas .

You might be interested in
How many hydrogen and carbon atoms in a diamond
Wewaii [24]

Answer:

Explanation:

Thus, total 4+4=8 C atoms are present per unit cell of diamond. Carbon has an electronic arrangement of 2,4. In diamond, each carbon shares electrons with four other carbon atoms - forming four single bonds.

4 0
3 years ago
Which is the BEST description of how eyeglasses work?
Sonbull [250]

Answer:

C I think.

Explanation:

3 0
3 years ago
What is the difference between regional metamorphism and contact metamorphism?
-Dominant- [34]
Contact metamorphism<span> is a type of </span>metamorphism<span> where rock minerals and texture are changed, mainly by heat, due to </span>contact<span> with magma. </span>Regional metamorphism<span> is a type of </span>metamorphism<span> where rock minerals and texture are changed by heat and pressure over a wide area or region.</span>
4 0
3 years ago
A gas is collected from a radioactive material; upon inspection, the gas is identified as helium. the presence of the helium ind
Flura [38]
The presence of helium gas indicates the radioactive sample is most likely decaying by α-decay, or alpha decay. α-decay is the type of radioactive decay in which an atomic nucleus emits α particles. α particles are Helium nuclei. So the correct answer would be α-decay.
7 0
3 years ago
A) Determine the x and y-components of the ball's velocity at t = 0.0s, 2.0, 3.0 secs.
malfutka [58]

The kinematic relationships we can find the position, acceleration and launch angle of the body on the planet Exidor.

a) the position are

      time (s)  x (m)   y(m)

        0            0          0

        2.0         3.6        1.2

        3.0         5.4        0.9

b) The aceleration is  g = 0.6 m / s²

c) The launch angle      θ = 33.7º

given parameters

  • the initial velocity of the body vₓ = 1.8m / s and v_y = 1.2 m / s
  • the movement times t = 1.0s, 2.0s and 3.0 s

to find

    a) position

    b) acceleration

    c) launch angle

Projectile launch is an application of kinematics to the movement of the body in two dimensions where there is no acceleration on the x axis and the y axis has the planet's gravity acceleration

b) To calculate the acceleration of the plant acting on the y-axis, we use that the vertical velocity of the body at the highest point is zero.

         v_y = v_{oy} - g t

where v and v({oy}  are the velocities of the body, g the acceleration of the planet's gravity and t the time

          0 = v_{oy} - gt

           g = v_{oy} / t

from the graph we observe that the highest point occurs for t = 2.0 s

           g = 1.2 / 2.0

           g = 0.6 m / s²

 

a) The position is requested for several times

X axis

in this axis there is no acceleration so we can use the uniform motion relationships

          vₓ = x / t

          x = vₓ t

where x is the position, vx is the velocity and t is the time

we calculate for the time

t = 0.0 s

          x₀ = 0

           

t = 2.0 s

          x₂ = 1.8 2

          x₂ = 3.6 m

t = 3.0 s

          x₃ = 1.8 3

          x₃ = 5.4 m

Y axis

In this axis there is the acceleration of the planet, let us use for the position the relation

          y = v_{oy} t - ½ g t²

t = 0.0 s

          y₀ = 0

          y₀ = 0 m

t = 2.0 s

         y₂ = 1.2 2 - ½ 0.6 2²

         y₂ = 1.2 m

t = 3.0 s

        y₃ = 1.2  3 - ½  0.6  3²

        y₃ = 0.9 m

c) the launch angle use the trigonometry relation

        tan θ = \frac{v_y}{v_x}

        θ = tan⁻¹ \frac{v_y}{v_x}

        θ = tan⁻¹ \frac{1.2}{1.8}

        θ = 33.7º

measured counterclockwise from the positive side of the x-axis

With the kinematic relationships we can find the position, acceleration and launch angle of the body on the planet Exidor.

a) the position are

      time (s)  x (m)   y(m)

        0            0          0

        2.0         3.6        1.2

        3.0         5.4        0.9

b) The aceleration is  g = 0.6 m / s²

c) The launch angle      θ = 33.7ºto)

learn more about projectile launch here:

brainly.com/question/10903823

4 0
3 years ago
Other questions:
  • A pendulum makes 50 complete swings in 2 min 40 s.<br> What is the time period for 1 complete swing?
    12·2 answers
  • The air inside a balloon exerts a force of 1.5 n on an area of 0.5 m^2. what is the pressure inside the balloon?
    10·2 answers
  • What is domain theory? How does it explain how an electromagnet become magnetic
    8·1 answer
  • Suppose we replace the original launcher with one that fires the ball upward at twice the speed. We make no other changes. How f
    6·1 answer
  • Which is greater, the mass of the compounds before a chemical reaction or the mass of the compounds after a chemical reaction?
    9·1 answer
  • Which of the following best describes entropy
    11·1 answer
  • Which of the following provides alternating current? Select all that apply.
    11·1 answer
  • A bag of sugar weights 20 N on the earths surface. If you double the distance from the center of the earth, the bag now weighs w
    15·1 answer
  • A runner starts from rest and stops in 12 seconds. He covers
    5·1 answer
  • Ramu,the gardener,is trying to pull out weeds. however,he has to apply great force.why do you think he has to apply to much forc
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!