Explanation:
The inertia of a 4 kg mass is four times as great as a 1 kg mass.
Answer:
B
Explanation:
Displacement is the distance from the start point to the endpoint, displacement disregard the path taken or the amount traveled.
if you start at point A, then go to point B, and back to point A, the displacement is zero because you started and ended at the same point.
for this question, pretend you started at point A, went east 20 km to point B, and then west 8 km to point C, your displacement is 12 km. 12 km is the distance between point A and point C.
Answer:
Hello There!!
Explanation:
There is no work done against the force of gravity because the angle of displacement and the direction is 90°.
hope this helps,have a great day!!
~Pinky~
Answer:
1) a) I₁ = 0.2941 kg m², b) I₂ = 0.2963 kg m², c) I_{total} = 0.5904 kg m²
3) α = 6.31 10⁶ rad / s²
Explanation:
1) The moment of inertia for bodies with high symmetry is tabulated, for a divo with an axis passing through its center is
I = ½ m r²
a) moment of inertia of the upper disk
I₁ = ½ m₁ r₁²
I₁ = ½ 1,468 0.633²
I₁ = 0.2941 kg m²
b) upper aluminum disc moment of inertia
I₂ = ½ m₂ r₂²
I₂ = ½ 1.479 0.633²
I₂ = 0.2963 kg m²
c) the moment of inertia is an additive scalar quantity therefore
I_{total} = I₁ + I₂
I_{total} = 0.2941 + 0.2963
I_{total} = 0.5904 kg m²
3) ask the value of the angular acceleration, that is, the second derivative of the angle with respect to time squared
indicate the angular velocity of the system w = 400 rev / s
Let's reduce the SI system
w = 400 rev / s (2π rad / rev) = 2513.27 rad / s
as the system is rotating we can calculate the centripetal acceleration
a = w² R
a = 2513.27² 0.633
a = 3.998 10⁶ m / s²
the linear and angular variable are related
a = α r
α = a / r
α = 3.998 10⁶ / 0.633
α = 6.31 10⁶ rad / s²
<span>The drag force acts opposite to the direction the cars' motion and the propelling force is in the direction of the motion. These are the two forces acting on the car and since they are both equal and opposite in direction, they cancel out each other. Thus, the car is able to move at a constant speed without changing its direction or momentum.</span>