Answer:
Kc = 2.34 mol*L
Explanation:
The calculation of the Kc of a reaction is performed using the values of the concentrations of the participants in the equilibrium.
A + B ⇄ C + D
Kc = [C] * [D] / [A] * [B]
According to the reaction
Kc = [SO2]^2 * [O2]^2 / [SO3]^2
Knowing the 0.900 mol of SO3 is placed in a 2.00-L it means we have a 0.450 mol/L of SO3
0.450 --> 0 + 0 (Beginning of the reaction)
0.260 --> 0.260 + 0.130 (During the reaction)
0.190 --> 0.260 + 0.130 (Equilibrium of the reaction)
Kc = [0.260]^2 + [0.130]^2 / [0.190]^2
Kc = 2.34 mol*L
Answer:
D
Explanation:
the production of an odor would indicate that the heat ignited a chemical reaction
Answer : The value of
at this temperature is 66.7
Explanation : Given,
Pressure of
at equilibrium = 0.348 atm
Pressure of
at equilibrium = 0.441 atm
Pressure of
at equilibrium = 10.24 atm
The balanced equilibrium reaction is,

The expression of equilibrium constant
for the reaction will be:

Now put all the values in this expression, we get :


Therefore, the value of
at this temperature is 66.7
Answer:
D
Explanation:
To answer this question, we will need to write the dissociation equation of aluminum trichloride.
AlCl3 ——-> Al3+ + 3Cl-
It can be seen that when aluminum chloride dissociates, it gives one mole of aluminum ion and three moles of the chloride ion.
From here we can see that the concentration of the aluminum chloride equals that of the aluminum ion while that of the chloride ion is thrice that of the aluminum chloride. This means we simply multiply 0.12M by 3 to get the molarity of the chloride ion while that of the aluminum ion remains the same