1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katen [24]
2 years ago
9

Usually, long spanners are preferred more than short spanners to unscrew a very tight rusted nut. Give reason.​

Physics
1 answer:
allochka39001 [22]2 years ago
7 0

Answer:

Explanation:

The longer arm means the force needed to create the required torque is lower than for the short handled spanner.

τ = FR

You might be interested in
A 6 N and a 10 N force act on an object. The moment arm of the 6 N force is 0.2 m. If the 10 N force produces five times the tor
Levart [38]

Answer:

The moment arm is 0.6 m

Explanation:

Given that,

First force F_{1}=6\ N

Second force F_{2}=10\ N

Distance r = 0.2 m

We need to calculate the moment arm

Using formula of torque

\tau=Force\times lever\ arm

So, Here,

\tau_{2}=5 \tau_{1}

We know that,

The torque is the product of the force and distance.

Put the value of torque in the equation

F_{2}\times d_{2}=5\times F_{1}\times r_{1}

r_{2}=\dfrac{5\times F_{1}\times r_{1}}{F_{2}}

Where, F_{1}=First force

F_{1}=First force

F_{2}=Second force

r_{1}= distance

Put the value into the formula

r_{2}=\dfrac{5\times6\times0.2}{10}

r_{2}=0.6\ m

Hence, The moment arm is 0.6 m

6 0
3 years ago
a ball is projected upward at time t = 0.00 s from a point on a roof 70 m above the ground. The ball rises, then falls and strik
grin007 [14]

Answer: 17.68 s

Explanation:

This problem is a good example of Vertical motion, where the main equation for this situation is:  

y=y_{o}+V_{o}t-\frac{1}{2}gt^{2} (1)  

Where:  

y=0 is the height of the ball when it hits the ground  

y_{o}=70 m is the initial height of the ball

V_{o}=82m/s is the initial velocity of the ball  

t is the time when the ball strikes the ground

g=9.8m/s^{2} is the acceleration due to gravity  

Having this clear, let's find t from (1):  

0=70m+(82m/s)t-\frac{1}{2}(9.8m/s^{2})t^{2} (2)  

Rewritting (2):

-\frac{1}{2}(9.8m/s^{2})t^{2}+(82m/s)t+70m=0 (3)  

This is a quadratic equation (also called equation of the second degree) of the form at^{2}+bt+c=0, which can be solved with the following formula:

t=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}  (4)

Where:

a=-\frac{1}{2}(9.8m/s^{2}

b=82m/s

c=70m

Substituting the known values:

t=\frac{-82 \pm \sqrt{82^{2}-4(-\frac{1}{2}(9.8)(70)}}{2a}  (5)

Solving (5) we find the positive result is:

t=17.68 s

7 0
3 years ago
Brandon is flying to the Western United States. His plane manages to cover 700 miles in 2 hours.
Naddik [55]

thats cool for brandon

4 0
3 years ago
Read 2 more answers
Noise-canceling headphones are an application of destructive interference. Each side of the headphones uses a microphone to pick
exis [7]
The question for this problem would be the minimum headphone delay, in ms, that will cancel this noise.
The 200 Hz. period = (1/200) = 0.005 sec. It will need to be delayed by 1/2, so 0.005/2, that is = 0.0025 sec. So converting sec to ms, will give us the delay of:Delay = 2.5 ms.
4 0
3 years ago
For the PE formula, why is the height required for calculations? Why do we need to know the height in order to determine PE? *
Fudgin [204]

Answer:

Answer in Explanation

Explanation:

Whenever we talk about the gravitational potential energy, it means the energy stored in a body due to its position in the gravitational field. Now, we know that in the gravitational field the work is only done when the body moves vertically. If the body moves horizontally on the same surface in the Earth's Gravitational Field, then the work done on the body is considered to be zero. Hence, the work done or the energy stored in the object while in the gravitational field is only possible if it moves vertically. This vertical distance is referred to as height. <u>This is the main reason why we require height in the P.E formula and calculations.</u>

The derivation of this formula is as follows:

Work = Force * Displacement

For gravitational potential energy:

Work = P.E

Force = Weight = mg

Displacement = Vertical Displacement = Height = h

Therefore,

P.E = mgh

5 0
2 years ago
Other questions:
  • Help Me!!! The number of protons determines what __________ a particular atom belongs to.
    9·1 answer
  • This timeline correctly shows the order of time periods in the Mesozoic Era.
    14·2 answers
  • 50-g of hot water at 65 degree C is poured into a cavity in a very large block of ice at 0 degrees C. The final temperature of t
    6·1 answer
  • Help with 5-10 please
    5·1 answer
  • Someone help me pls
    15·1 answer
  • PHYSICS
    15·1 answer
  • What are the negative aspects of using nuclear energy? Select all that apply.
    5·2 answers
  • How is an image produced by a plane mirror different than an image produced by a convex mirror
    14·2 answers
  • In order to add or subtract numbers in scientific notation do the exponents have to be the same
    8·1 answer
  • A golfer hits a stationary golf ball and gives it a velocity of 57.5 m/s. The golf ball has a mass of 0.045 kg. The impact of th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!