1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anuta_ua [19.1K]
4 years ago
8

Suppose you are navigating a spacecraft far from other objects. The mass of the spacecraft is 2.6 × 104 kg (about 26 tons). The

rocket engines are shut off, and you're coasting along with a constant velocity of <0, 20, 0> km/s. As you pass the location <7, 4, 0> km you briefly fire side thruster rockets, so that your spacecraft experiences a net force of <5 × 105, 0, 0> N for 24.5 s. The ejected gases have a mass that is small compared to the mass of the spacecraft. You then continue coasting with the rocket engines turned off. Where are you an hour later? (Think about what approximations or simplifying assumptions you made in your analysis. Also think about the choice of system: what are the surroundings that exert external forces on your system?)\
Physics
1 answer:
insens350 [35]4 years ago
5 0

56 will be the answer all you do is divide 104 to 26 then divide 2.6

You might be interested in
Premium
Luda [366]

Explanation:

the formula of speed is distance traveled by time it work

5 0
3 years ago
Read 2 more answers
Pls do question 1 part d). tysm
Aneli [31]

Answer:

c

Explanation:

cuz its informing the length of 5 and weight on 20N

5 0
3 years ago
A screen is placed 1.20m behind a single slit. The central maximum in the resulting diffraction pattern on the screen is 1.40cm
andrew11 [14]

Answer:

2.8 cm

Explanation:

y_1 = Separation between two first order diffraction minima = 1.4 cm

D = Distance of screen = 1.2 m

m = Order

Fringe width is given by

\beta_1=\dfrac{y_1}{2}\\\Rightarrow \beta_1=\dfrac{1.4}{2}\\\Rightarrow \beta_1=0.7\ cm

Fringe width is also given by

\beta_1=\dfrac{m_1\lambda D}{d}\\\Rightarrow d=\dfrac{m_1\lambda D}{\beta_1}

For second order

\beta_2=\dfrac{m_2\lambda D}{d}\\\Rightarrow \beta_2=\dfrac{m_2\lambda D}{\dfrac{m_1\lambda D}{\beta_1}}\\\Rightarrow \beta_2=\dfrac{m_2}{m_1}\beta_1

Distance between two second order minima is given by

y_2=2\beta_2

\\\Rightarrow y_2=2\dfrac{m_2}{m_1}\beta_1\\\Rightarrow y_2=2\dfrac{2}{1}\times 0.7\\\Rightarrow y_2=2.8\ cm

The distance between the two second order minima is 2.8 cm

8 0
3 years ago
When astronomers look at distant galaxies, what sort of motion do they see?
arlik [135]
Hello! You can call me Emac or Eric.

I understand your problem, that question is pretty hard. But I found some information that I think you should read. This can get your problem done quickly.

Please hit that thank you button if that helped, I don’t want thank you’s I just want to know that this helped.

Please reply if this doesn’t help, I will try my best to gather more information or a answer.

Here is some good information that could help you out a lot!


Let’s begin by exploring some techniques astronomers use to study how galaxies are born and change over cosmic time. Suppose you wanted to understand how adult humans got to be the way they are. If you were very dedicated and patient, you could actually observe a sample of babies from birth, following them through childhood, adolescence, and into adulthood, and making basic measurements such as their heights, weights, and the proportional sizes of different parts of their bodies to understand how they change over time.

Unfortunately, we have no such possibility for understanding how galaxies grow and change over time: in a human lifetime—or even over the entire history of human civilization—individual galaxies change hardly at all. We need other tools than just patiently observing single galaxies in order to study and understand those long, slow changes.

We do, however, have one remarkable asset in studying galactic evolution. As we have seen, the universe itself is a kind of time machine that permits us to observe remote galaxies as they were long ago. For the closest galaxies, like the Andromeda galaxy, the time the light takes to reach us is on the order of a few hundred thousand to a few million years. Typically not much changes over times that short—individual stars in the galaxy may be born or die, but the overall structure and appearance of the galaxy will remain the same. But we have observed galaxies so far away that we are seeing them as they were when the light left them more than 10 billion years ago.


That is some information, I do have more if you need some! Thanks!

Have a great rest of your day/night! :)


Emacathy,
Brainly Team.


8 0
3 years ago
Why is the spectrum of a star called an absorption spectrum?
ladessa [460]
It is called absorption spectrum because a gas of hydrogen will make a line spectrum and if viewed for another angle it would be between a continuum light and a emission line spectrum
6 0
4 years ago
Other questions:
  • Two objects, Object A and Object B, need to be identified. Object A's index of refraction is determined to be 1.77, and Object B
    15·2 answers
  • As an auto mechanic, you need to determine the emf and internal resistance of an old battery. you perform these two measurements
    12·1 answer
  • A frictionless pendulum clock on the surface of the earth has a period of 1.00 s. On a distant planet, the length of the pendulu
    6·1 answer
  • Plz help...Thanks.
    6·1 answer
  • A generator consists of a rectangular loop with turns of wire spinning at in a uniform magnetic field. The generator output is c
    7·1 answer
  • You attach a 1.70 kg block to a horizontal spring that is fixed at one end. You pull the block until the spring is stretched by
    8·1 answer
  • An air track car with a mass of 0.55 kg and velocity of 5.8 m/s to the right collides and couples with a 0.45 kg car moving to t
    9·1 answer
  • I need help with 03.01 Playing With Others – President's Challenge Goals
    12·1 answer
  • As crust forms at the mid-ocean ridge, it gets pushed away from the ridge as newer crust forms. What is true about crust that fo
    13·2 answers
  • What is a meteorite?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!