The modulus of elasticity is 28.6 X 10³ ksi
<u>Explanation:</u>
Given -
Length, l = 5in
Force, P = 8000lb
Area, A = 0.7in²
δ = 0.002in
Modulus of elasticity, E = ?
We know,
Modulus of elasticity, E = σ / ε
Where,
σ is normal stress
ε is normal strain
Normal stress can be calculated as:
σ = P/A
Where,
P is the force applied
A is the area of cross-section
By plugging in the values, we get
σ = 
σ = 11.43ksi
To calculate the normal strain we use the formula,
ε = δ / L
By plugging in the values we get,
ε = 
ε = 0.0004 in/in
Therefore, modulus of elasticity would be:

Thus, modulus of elasticity is 28.6 X 10³ ksi
Answer:
hhahhhwghwhwhwhwjwnwjnnnnwnwwnw
Explanation:
jwkwkkwoiwiwiwiwiwowwiwowowiiiiwuuwuwgeevehehsvhsvwhbhhehehwgjjwhwhjwjqwjjuuuwi####!\\\\e
Answer:
Heat required =7126.58 Btu.
Explanation:
Given that
Mass m=20 lb
We know that
1 lb =0.45 kg
So 20 lb=9 kg
m=9 kg
Ice at -15° F and we have to covert it at 200° F.
First ice will take sensible heat at up to 32 F then it will take latent heat at constant temperature and temperature will remain 32 F.After that it will convert in water and water will take sensible heat and reach at 200 F.
We know that
Specific heat for ice 
Latent heat for ice H=336 KJ/kg
Specific heat for ice 
We know that sensible heat given as

Heat for -15F to 32 F:


Q=858.69 KJ
Heat for 32 Fto 200 F:


Q=6330.74 KJ
Total heat=858.69 + 336 +6330.74 KJ
Total heat=7525.43 KJ
We know that 1 KJ=0.947 Btu
So 7525.43 KJ=7126.58 Btu
So heat required to covert ice into water is 7126.58 Btu.
Answer:
you need more details but if you have to find the difference, its $2.00
Explanation:
8-6=2