1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mekhanik [1.2K]
3 years ago
11

¿Por qué la lógica de proposiciones es conocida también como lógica de las proposiciones sin analizar?

Engineering
1 answer:
Ganezh [65]3 years ago
6 0
CHICKEN WING CHICKEN WING HOT DOG AND BALONEY CHICKEN AND MACORONI
You might be interested in
Problem 4.041 SI Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with a vo
Rom4ik [11]

Answer:

0.0297M^3/s

W=68.48kW

Explanation:

Hello! To solve this problem, we must first find all the thermodynamic properties at the input (state 1) and the compressor output (state 2), using the thermodynamic tables

Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties such as pressure and temperature.  

state 1

X=quality=1

T=-26C

density 1=α1=5.27kg/m^3  

entalpy1=h1=234.7KJ/kg

state 2

T2=70

P2=8bar=800kPa

density 2=α2=31.91kg/m^3  

entalpy2=h2=306.9KJ/kg

Now to find the flow at the outlet of the compressor, we remember the continuity equation that states that the mass flow is equal to the input and output.

m1=m2

(Q1)(α1)=(Q2)(α2)

\frac{(Q1)(\alpha 1) }{\alpha 2} =Q2\\Q2=\frac{(0.18)(5.27) }{31.91} =0.0297M^3/s

the volumetric flow rate at the exit is 0.0297M^3/s

To find the power of the compressor we use the first law of thermodynamics that says that the energy that enters must be equal to the energy that comes out, in this order of ideas we have the following equation

W=m(h2-h1)

m=Qα

W=(0.18)(5.27)(306.9-234.7)

W=68.48kW

the compressor power is 68.48kW

4 0
3 years ago
Water at 20 °C is flowing with velocity of 0.5 m/s between two parallel flat plates placed 1 cm apart. Determine the distances f
Basile [38]

Answer:

The distance from the entrance at which the boundary layers meet is 0.516m

The distance from the entrance at which the thermal boundary layers meet is 1.89m

Explanation:

For explanation, look at the attached file

3 0
3 years ago
The device whose operation closely matches the way the clamp-on ammeter works is
Ivanshal [37]

Answer:

The answer is

C. Split phase motor

Explanation:

Clamp meters rely on the principle of magnetic induction to make non contact AC current measurements. Electric current flowing through a wire produces a magnetic field.

Which is similar to basic mode of operation of electric motor and split phase motor is a type of electric motor.

What is a a clamp on meter?

Clamp meters are electrical testers which have wide jaws that are able to clamp around an electrical conductor. Originally designed as a single purpose tool for measuring AC current, clamp meters now include inputs for accepting test leads and other probes that support a wide range of electrical measurements, the jaws of a clamp meter permit work in tight spaces and permits current measurements on live conductors without circuit interruption.

6 0
3 years ago
64A geothermal pump is used to pump brine whose density is 1050 kg/m3at a rate of 0.3 m3/s from a depth of 200 m. For a pump eff
grin007 [14]

Answer:

835,175.68W

Explanation:

Calculation to determine the required power input to the pump

First step is to calculate the power needed

Using this formula

P=V*p*g*h

Where,

P represent power

V represent Volume flow rate =0.3 m³/s

p represent brine density=1050 kg/m³

g represent gravity=9.81m/s²

h represent height=200m

Let plug in the formula

P=0.3 m³/s *1050 kg/m³*9.81m/s² *200m

P=618,030 W

Now let calculate the required power input to the pump

Using this formula

Required power input=P/μ

Where,

P represent power=618,030 W

μ represent pump efficiency=74%

Let plug in the formula

Required power input=618,030W/0.74

Required power input=835,175.68W

Therefore the required power input to the pump will be 835,175.68W

5 0
2 years ago
Ninety-five percent of the acetone vapor in an 85 vol.% air stream is to be absorbed by countercurrent contact with pure water i
Sati [7]

Answer:

Explanation:

.......................................................................................................................

5 0
3 years ago
Other questions:
  • Tech A says that a gear set that has a drive gear with 9 teeth and a driven gear with 27 teeth has a gear ratio of 3:1. Tech B s
    7·1 answer
  • Which is the correct order for handwashing
    11·2 answers
  • which systems engineering support discipline has the goal to ensure that support considerations are an integral part of the syst
    14·1 answer
  • What is the answer???
    10·1 answer
  • Dndbgddbdbhfdhdhdhhfhffhfhhddhhdhdhdhdhd​
    11·2 answers
  • There are some sections of the SDS that are not mandatory.
    11·1 answer
  • For many people in 3D modeling copyrights and licensing allow them to earn a living.
    12·1 answer
  • How can you contribute to achieved the mission of NSTP during pandemic in your society?
    7·1 answer
  • What are the two (2) different design elements of scratch?
    10·1 answer
  • Types of lubricants on the market include:
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!