1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
algol [13]
3 years ago
6

Kinetic energy is defined as energy of an object in:

Engineering
2 answers:
Murrr4er [49]3 years ago
5 0

your answer is c. motion

Romashka-Z-Leto [24]3 years ago
5 0
In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its Motion.
You might be interested in
Q1: The first option should always be to get out safely (RUN)
nekit [7.7K]

Answer:

Q1 true

Q2 true

And other I am confuse

6 0
2 years ago
Sarah needs to create an architectural drawing for a museum building with an inclined surface. Which presentation view will be t
prohojiy [21]

Answer: auxiliary

Explanation: got it right

7 0
2 years ago
Show the ERD with relational notation with crowfoot. Your ERD must show PK, FKs, min and max cardinality, and correct line types
zhenek [66]

Answer

The answer and procedures of the exercise are attached in the following archives.

Step-by-step explanation:

You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.  

3 0
3 years ago
Using a forked rod, a 0.5-kg smooth peg P is forced to move along the vertical slotted path r = (0.5 θ) m, whereθ is in radians.
-BARSIC- [3]

Answer:

N_c = 3.03 N

F = 1.81 N

Explanation:

Given:

- The attachment missing from the question is given:

- The given expressions for the radial and θ direction of motion:

                                       r = 0.5*θ

                                       θ = 0.5*t^2              ...... (correction for the question)

- Mass of peg m = 0.5 kg

Find:

a) Determine the magnitude of the force of the rod on the peg at the instant t = 2 s.

b) Determine the magnitude of the normal force of the slot on the peg.

Solution:

- Determine the expressions for radial kinematics:

                                        dr/dt = 0.5*dθ/dt

                                        d^2r/dt^2 = 0.5*d^2θ/dt^2

- Similarly the expressions for θ direction kinematics:

                                        dθ/dt = t

                                        d^2θ/dt^2 = 1

- Evaluate each at time t = 2 s.

                                        θ = 0.5*t^2 = 0.5*2^2 = 2 rad -----> 114.59°

                                        r = 1 m , dr / dt = 1 m/s , d^2 r / dt^2 = 0.5 m/s^2

- Evaluate the angle ψ between radial and horizontal direction:

                                        tan Ψ = r / (dr/dθ) = 1 / 0.5

                                        Ψ = 63.43°

- Develop a free body diagram (attached) and the compute the radial and θ acceleration:

                                        a_r = d^2r / dt^2 - r * dθ/dt

                                        a_r = 0.5 - 1*(2)^2 = -3.5 m/s^2

                                        a_θ =  r * (d^2θ/dt^2) + 2 * (dr/dt) * (dθ/dt)

                                        a_θ = 1(1) + 2*(1)*(2) = 5 m/s^2

- Using Newton's Second Law of motion to construct equations in both radial and θ directions as follows:

Radial direction:              N_c * cos(26.57) - W*cos(24.59) = m*a_r

θ direction:                      F  - N_c * sin(26.57) + W*sin(24.59) = m*a_θ

Where, F is the force on the peg by rod and N_c is the normal force on peg by the slot. W is the weight of the peg. Using radial equation:

                                       N_c * cos(26.57) - 4.905*cos(24.59) = 0.5*-3.5

                                       N_c = 3.03 N

                                       F  - 3.03 * sin(26.57) + 4.905*sin(24.59) = 0.5*5

                                       F = 1.81 N

4 0
3 years ago
The way most recursive functions are written, they seem to be circular at first glance, defining the solution of a problem in te
EastWind [94]

Question Continuation

int factorial(int n) {

if(n == 0)

return 1;

else

return n * factorial(n - 1);

}

Provide a brief explanation why this recursive function works.

Show all steps involved in calculating factorial(3) using the function defined.

Answer:

1. Brief explanation why this recursive function works.

First, the recursive method factorial is defined.

This is the means through with the machine identifies the method.

The method is defined as integer, the machine will regard it as integer.

When the factorial is called from anywhere that has access to it, which in this case is within the factorial class itself. This means you can call it from the main method, or you can call it from the factorial method itself. It's just a function call that, well, happens to call itself.

2. Steps to calculate factorial(3)

1 First, 3 is assigned to n.

2. At line 2, the machine checks if n equals 0

3. If yes, the machine prints 1

4. Else; it does the following from bottom to top

factorial(3):

return 3*factorial(2);

return 2*factorial(1):

return 1;

Which gives 3 * 2 * 1 = 6

5. Then it prints 6, which is the result of 3!

6 0
3 years ago
Other questions:
  • Write SQL queries to answer the following questions: What are the names of the course(s) that student Altvater took during the s
    13·1 answer
  • An air-standard Otto cycle has a compression ratio of 6 and the temperature and pressure at the beginning of the compression pro
    13·1 answer
  • What is the heat flux (W/m2) to an object when subjected to convection heat transfer environment given: 24 °C = the surface temp
    10·1 answer
  • 1. A copper block of volume 1 L is heat treated at 500ºC and now cooled in a 200-L oil bath initially at 20◦C. Assuming no heat
    10·1 answer
  • Consider a sinusoidal oscillator consisting of an amplifier having a frequency-independent gain A (where A is positive) and a se
    6·1 answer
  • An orchestra is having a recording done of 2 performances in the same concert hall. The first show is sold out. They struggled t
    7·1 answer
  • A car generator turns at 400 rpm (revolutions per minute) when the engine is idling. It has a rectangular coil with 300 turns of
    7·1 answer
  • What is applied technology?
    14·1 answer
  • If a population has no predadors and plenty of available resources, how might that population change
    15·1 answer
  • Not all projects that engineers work on will have human factors involved.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!