<span>In this problem, we need to solve for Bubba’s mass. To do this, we let A be the area of the raft and set the weight of the displaced fluid with the raft alone as ρwAd1g and ρwAd2g with the person on the raft, </span>where ρw is the density of water, d1 = 7cm, and d2= 8.4 cm. Set the weight of displaced fluid equal to the weight of the floating objects to eliminate A and ρw then solve for m.
<span>ρwAd1g = Mg</span>
ρw<span>Ad2g = (M + m) g</span>
<span>d2∕d1 = (M + m)/g</span>
m = [(d2<span>∕d1)-1] M = [(8.4 cm/7.0 cm) - 1] (600 kg) =120 kg</span>
This means that Bubba’s mass is 120 kg.
Answer:
20 N
Explanation:
In air, the normal force is equal to the weight.
∑F = ma
N − mg = 0
N = mg
Submerged in water, the normal force is equal to the weight minus the buoyant force:
∑F = ma
B + N − mg = 0
N = mg − B
Plugging in values:
80 N = 100 N − B
B = 20 N
Answer:
655128 ohm
Explanation:
C = Capacitance of the capacitor = 7.8 x 10⁻⁶ F
V₀ = Voltage of the battery = 9 Volts
V = Potential difference across the battery after time "t" = 4.20 Volts
t = time interval = 3.21 sec
T = Time constant
R = resistance
Potential difference across the battery after time "t" is given as
T = 5.11 sec
Time constant is given as
T = RC
5.11 = (7.8 x 10⁻⁶) R
R = 655128 ohm
Newton’s 2nd law
———
Newton's second law states that the acceleration of an object is directly related to the force on it, and inversely related to the mass of the object. You need more force to move or stop an object with a lot of mass (or inertia) than you need for an object with less mass. .
1. True
2. True
3. True
4. True
5. 10ft