N₂H₄ + 2H₂O₂ → N₂ + 4H₂O
mol = mass ÷ molar mass
If mass of hydrazine (N₂H₄) = 5.29 g
then mol of hydrazine = 5.29 g ÷ ((14 ×2) + (1 × 4))
= 0.165 mol
mole ratio of hydrazine to Nitogen is 1 : 1
∴ if moles of hydrazine = 0.165 mol
then moles of nitrogen = 0.165 mol
Mass = mol × molar mass
Since mol of nitrogen (N₂) = 0.165
then mass of hydrazine = 0.165 × (14 × 2)
= 4.62 g
Answer:
It allows for easier division of the sister chromatids into two identical chromosomes, one for each cell, and helps to prevent mistakes. You just studied 2 terms!
Explanation:
<h3>
Answer:</h3>
4551.37 Pascals
<h3>
Explanation:</h3>
The pressure refers to the force exerted by a substance per unit area.
The pressure is liquid is calculated by;
P = height × density × gravitational acceleration
In this case;
Height = 636.2 mm
Density = 0.7300 g/cm³
g = 9.8 N/kg
We need to convert mm to m and g/cm³ to kg/m³
Therefore;
Height = 636.2 mm ÷1000
= 0.6362 m
Density = 0.73 g/cm³ × 1000 kg/m³
= 730 kg/m³
Then, we can calculate the pressure;
Pressure = 0.6362 m × 730 kg/m³ × 9.8 N/kg
= 4551.3748 pascals
= 4551.37 Pascals
Therefore, the pressure of the column of decane is 4551.37 Pascals
The molar heat of fusion for iron with a mass of 200.0g releases 9,840 cal when it freezes at its freezing point is 2,747.7 cal/mol.
<h3>How to calculate molar heat of fusion?</h3>
The heat of fusion of a substance can be calculated by using the following formula:
Q = m∆H
Where:
- Q = quantity of heat
- m = mass
- ∆H = change in temperature of fusion
However, the quantity of heat has been given as 9840calories. The molar heat of fusion of iron can be calculated by dividing the heat of fusion by the number of moles of iron.
Moles of iron = mass ÷ molar mass
moles = 200g ÷ 55.8g/mol
moles = 3.58moles
molar heat of fusion = 9840 cal ÷ 3.58mol
molar heat of fusion = 2748.6 cal/mol
Therefore, the molar heat of fusion for iron with a mass of 200.0g releases 9,840 cal when it freezes at its freezing point is 2,747.7 cal/mol.
Learn more about molar heat of fusion at: brainly.com/question/8263730
Answer:
I think it would be b. The octet rule states that transition metal group elements tend to react so that they attain a noble gas electron configuration.