Answer:
The rice will move
Explanation:
the sound vibration and waves will cause the rice to move
Hey there!
The best way to balance chemical equations is to first start by balancing polyatomic ions such as OH and SO₄.
Next, balance other elements, but save elements that are by themselves for last, such as H₂ or Fe. Once you balance everything else you can do the ones by themselves, it's much easier.
Hope this helps!
<u>Answer:</u>
<em>Here the given material is taken and mixed with water.</em>
<u>Explanation:</u>
The amount of material and water taken are same. Hence if it is not soluble in water it should make a dense and flowy paste like material and if it is soluble in water it should this and thicker density of water should remain.
If the amount of water that we are taking is more than the material will float in water if it is not soluble and lighter than water or would sink if it is heavier than water.
<h2>a)
The rate at which
is formed is 0.066 M/s</h2><h2>b)
The rate at which molecular oxygen
is reacting is 0.033 M/s</h2>
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
Rate in terms of disappearance of
=
= 0.066 M/s
Rate in terms of disappearance of
= ![-\frac{1d[O_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BO_2%5D%7D%7Bdt%7D)
Rate in terms of appearance of
= ![\frac{1d[NO_2]}{2dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1d%5BNO_2%5D%7D%7B2dt%7D)
1. The rate of formation of 
![-\frac{d[NO_2]}{2dt}=\frac{1d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BNO_2%5D%7D%7B2dt%7D%3D%5Cfrac%7B1d%5BNO%5D%7D%7B2dt%7D)
![\frac{1d[NO_2]}{dt}=\frac{2}{2}\times 0.066M/s=0.066M/s](https://tex.z-dn.net/?f=%5Cfrac%7B1d%5BNO_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B2%7D%7B2%7D%5Ctimes%200.066M%2Fs%3D0.066M%2Fs)
2. The rate of disappearance of 
![-\frac{1d[O_2]}{dt}=\frac{d[NO]}{2dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BO_2%5D%7D%7Bdt%7D%3D%5Cfrac%7Bd%5BNO%5D%7D%7B2dt%7D)
![-\frac{1d[O_2]}{dt}=\frac{1}{2}\times 0.066M/s=0.033M/s](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BO_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%200.066M%2Fs%3D0.033M%2Fs)
Learn more about rate law
brainly.com/question/13019661
https://brainly.in/question/1297322
Answer:
strength = 10⁻²/10⁻³ = 10 times more acidic
Explanation:
1. A solution with a pH of 9 has a pOH of
pH + pOH = 14 => pOH = 14 - pH = 14 - 9 = 5
2. Which is more acidic, a solution with a pH of 6 or a pH of 4?
pH of 4 => Higher [H⁺] = 10⁻⁴M vs pH of 6 => [H⁺] = 10⁻⁶M
3. How many times more acidic is a solution with a pH of 2 than a solution with a pH of 3?
soln with pH = 2 => [H⁺] = 10⁻²M
soln with pH = 3 => [H⁺] = 10⁻³M
strength = 10⁻²/10⁻³ = 10 times more acidic
4. What is the hydrogen ion concentration [H + ] in a solution that has a pH of 8?
[H⁺] = 10^-pH = 10⁻⁸M
5. A solution has a pOH of 9.6. What is the pH? (Use the formula.)
pH + pOH = 14 => pH = 14 - 9.6 = 4.4