Answer:
4 moles of SO3 will be produced from 6 moles of oxygen.
Explanation:
From the reaction given
S8 + 12 O2 ----> 8 SO3
12 moles of oxygen reacts to form 8 moles of SO3
if 6 moles of oxygen were to be used instead, it has been reduced to half of the original mole of oxygen used. Then the moles of SO3 will also be reduced to half.
6 moles of O2 will yield 4 moles of SO3
12 moles = 8 moles
6 moles = ?
? = 6 * 8 / 12
? = 48/ 12
? = 4 moles of SO3.
Explanation:
Mass of the organic compound = 200g
Mass of carbon = 83.884g
Mass of hydrogen = 10.486g
Mass of oxygen = 18.640g
The mass of nitrogen = mass of organic compound - (mass of carbon + mass of hydrogen + mass of oxygen)
Mass of nitrogen = 200 - (83.884 + 10.486 + 18.64) = 200 - 113.01
Mass of nitrogen = 86.99g
The empirical formula of a compound is its simplest formula.
It is derived as shown below;
C H O N
Mass 83.884 10.486 18.64 86.99
molar
mass 12 1 16 14
Moles 83.884/12 10.486/1 18.64/16 86.99/14
6.99 10.49 1.17 6.21
Divide
by
lowest 6.99/1.17 10.49/1.17 1.17/1.17 6.21/1.17
6 9 1 5
Empirical formula C₆H₉ON₅
learn more:
Empirical formula brainly.com/question/2790794
#learnwithBrainly
Answer:
B.0.2 J/g°C
Explanation:
From the attached picture;
- Heat attained in the solid phase is 200 Joules
- Change in temperature is 50°C ( from 0°C to 50°C)
- Mass of the solid is 20 g
We are required to determine the specific heat capacity of the substance;
- We need to know that Quantity of heat is given by the product of mass,specific heat capacity and change in temperature.
- That is; Q = mcΔT
Rearranging the formula;
c = Q ÷ mΔT
Therefore;
Specific heat = 200 J ÷ (20 g × 50°c)
= 0.2 J/g°C
Thus, the specific heat of the solid is 0.2 J/g°C