The answer to your question is False, my good man! Hope this helps!
Answer:
It is true. a) 0.25 mol
Explanation:
<em>Hello </em><em>there?</em>
To begin solving this problem, you have to write down the chemical equation and make sure it is well balanced.
The chemical equation is;
3Mg(s) + N2(g) => Mg3N2(s)
1 mole of Mg = 24g
We have 18g of Magnesium (Mg) reacting with Nitrogen gas (N2)
From our equation,
Mole ratio = 3 : 1, (Mg : N2)
1 mol Mg = 24g
x mol Mg = 18g
x mol Mg = (18/24) = 0.75 mol Mg
But mole ratio = 3 : 1 (Mg : N2)
This means that 3 => 0.75 mol Mg
What about ratio 1 of N2?
N2 = (0.75 mol ÷ 3)/1
= 0.25 mol N2
<em>I </em><em>hope</em><em> </em><em>this </em><em>helps</em><em> </em><em>you </em><em>to </em><em>understand</em><em> </em><em>better</em><em>.</em><em> </em><em>Ha</em><em>v</em><em>e </em><em>a </em><em>nice </em><em>studies.</em><em> </em><em />
The highest energy occupied molecular orbital in the C-C bond of the C₂ molecule is 2pπ orbitals.
<h3>What is Molecular Orbital Theory?</h3>
According to this theory,
- Molecular orbitals are formed by intermixing of atomic orbitals of two or more atoms having comparable energies
- The number of molecular orbitals formed is equal to the number of atomic orbitals combined.
- The shape of molecular orbitals formed depends on the type of atomic orbitals combined
- Only atomic orbitals having comparable energies and the same orientation can intermix
- Bonding M.O. is formed by the additive effect of atomic orbitals and thus, has lower energy and high stability.
- Antibonding M.O. is formed by the subtractive effect of atomic orbitals and thus, has higher energy and low stability.
- Bonding M.O. is represented by
while Antibonding M.O. is represented by 
Molecular Orbital Diagram of C₂
Learn more about Molecular Orbital Theory:
brainly.com/question/17371976
#SPJ4
The answer is <span>The mass of sodium chloride formed is less than 76 grams.
</span>
Remember Mass is never gained or loss in any chemical reactions
So,
hydrochloric acid + sodium hydroxide => <span>sodium chloride + water
Total 76 gram Total will also 76 gram
In this case, the mass of sodium chloride will be less than 76 gram because we need to take out the mass of the water.
</span>
Answer:
(1) cathode: Y
(2) anode X
(3) electrons in the wire flow toward: Y
(4) electrons in the wire flow away from: X
(5) anions from the salt bridge flow toward X
(6) cations from the salt bridge flow toward Y
(7) gains mass: Y
(8) looses mass X
Explanation:
The voltaic cell uses two different metal electrodes, each in an electrolyte solution. The anode will undergo oxidation and the cathode will undergo reduction. The metal of the anode will oxidize, going from an oxidation state of 0 (in the solid form) to a positive oxidation state, and it will become an ion. At the cathode, the metal ion in the solution will accept one or more electrons from the cathode, and the ion’s oxidation state will reduce to 0. This forms a solid metal that deposits on the cathode. The two electrodes must be electrically connected to each other, allowing for a flow of electrons that leave the metal of the anode and flow through this connection to the ions at the surface of the cathode. This flow of electrons is an electrical current that can be used to do work, such as turn a motor or power a light.