Answer:
20N
Explanation:
Ratio of N to cm-
10:2
so to make 2=4 times 2 so The ratio is now-
20:4
so to move 4 cm you need to push 20N.
Answer:
F = -8440.12 N
the magnitude of the average force needed to hold onto the child is 8440.12 N
Explanation:
Given;
Mass of child m = 16 kg
Speed of each car v = 59.0 mi/h = 26.37536 m/s
Time t = 0.05s
Applying the impulse momentum equation;
Impulse = change in momentum
Ft = ∆(mv)
F = ∆(mv)/t
F = m(∆v)/t
Where;
F = force
t = time
m = mass
v = velocity
Since the final speed of the car is zero(at rest) then;
∆v = 0 - v = -26.37536 m/s
Substituting the given values;
F = 16×-26.37536/0.05
F = -8440.1152 N
F = -8440.12 N
the magnitude of the average force needed to hold onto the child is 8440.12 N
Yes it does ! Uh huh. Right you are. Truer words are seldom written.
You have quoted the law quite accurately but also incompletely.
Do you have a question to ask ?
Explanation:
This is because the drag force suffered by the aircraft is proportional to the speed at which it travels. The thrust of the engines prints a speed to the plane and this speed prints a drag force, always reaching an equilibrium point of these two forces where the speed of the plane is constant and the acceleration is equal to zero.
Therefore, by reducing the thrust, the drag force is greater and the plane begins to decrease its speed, until it reaches the point where the new drag force is matched with the new thrust force, giving it a new final speed , without acceleration.
Answer:
a).
b).
Explanation:
a).
The work of the spring is find by the formula:

So knowing the work can find the constant K'

Solve for K'


b).
The force of the spring realice a motion so using the force and knowing the accelerations can find the mass



