The osmotic pressure of a solution is a colligative property, which means that it depends on the number of particles of solute in the solution.
Formula: Osmotic pressure = MRT, where M is the molarity of the solution, R is the universal constant of ideal gases and T is the absolute temperature of the solution.
So, the answer is the option .: the osmotic pressure of a solution increases as the number of particles of solute in the solution increases.
<u>Answer:</u> The correct answer is the mass number of the most common isotope of the element is 24.
<u>Explanation:</u>
We are given:
An element having atomic number 12 is magnesium and atomic mass of the element is 24.305
The image corresponding will be 
The number '24.305' is the average atomic mass of magnesium element.
Average atomic mass is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:

Average atomic mass of magnesium = 24.305 amu
As, the average atomic mass of magnesium lies closer to the mass of Mg-24 isotope. This means that the relative abundance of this isotope is the highest of all the other isotopes.
The 'Mg-24' isotope is the most common isotope of the given element.
Hence, the correct answer is the mass number of the most common isotope of the element is 24.
22.7 liters
The molar volume of an ideal gas depends on the temperature and pressure. One mole of any ideal gas occupies 22.7 liters at 0 0C and 1 bar (STP).
Hope this helped
I believe it’s true when particles move they create heat
Ionic compounds are formed between oppositely charged ions.
A binary ionic compound is composed of ions of two different elements - one of which is a positive ion(metal), and the other is negative ion (nonmetal).
To write the empirical formula of binary ionic compound we must remember that one ion should be positive and other ion should be negative, then only the correct formula should be written. To write the empirical formula the charges of opposite ions should be criss-crossed.
First empirical formula of binary ionic compound is written between
First Formula would be 
Second empirical formula is between 
Second Formula would be 
Note : When the subscript are same they get cancel out, so
would be written as 
Third empirical formula is between 
Third Formula would be :
Forth empirical formula is between 
Forth Formula would be :
or 
Note- The subscript will be simplified and the formula will be written as
.
The empirical formula of four binary ionic compounds are : 