I would think 10 but I would have to see the picture
Answer:
735 J
Explanation:
From the question given above, the following data were obtained:
Weight (W) = 49 N
Height (h) = 15 m
Potential energy =?
Potential energy is simply defined as the product of weight of the object and height to which the object is raised. Mathematically, it is expressed as:
Potential energy = weight × height
With the above formula, we can obtain the potential energy of the coconut as follow:
Weight (W) = 49 N
Height (h) = 15 m
Potential energy =?
Potential energy = weight × height
Potential energy = 49 × 15
Potential energy = 735 J
Thus, the potential energy of the coconut is 735 J
Answer:
The gravitational potential energy of a system is -3/2 (GmE)(m)/RE
Explanation:
Given
mE = Mass of Earth
RE = Radius of Earth
G = Gravitational Constant
Let p = The mass density of the earth is
p = M/(4/3πRE³)
p = 3M/4πRE³
Taking for instance,a very thin spherical shell in the earth;
Let r = radius
dr = thickness
Its volume is given by;
dV = 4πr²dr
Since mass = density* volume;
It's mass would be
dm = p * 4πr²dr
The gravitational potential at the center due would equal;
dV = -Gdm/r
Substitute (p * 4πr²dr) for dm
dV = -G(p * 4πr²dr)/r
dV = -G(p * 4πrdr)
The gravitational potential at the center of the earth would equal;
V = ∫dV
V = ∫ -G(p * 4πrdr) {RE,0}
V = -4πGp∫rdr {RE,0}
V = -4πGp (r²/2) {RE,0}
V = -4πGp{RE²/2)
V = -4Gπ * 3M/4πRE³ * RE²/2
V = -3/2 GmE/RE
The gravitational potential energy of the system of the earth and the brick at the center equals
U = Vm
U = -3/2 GmE/RE * m
U = -3/2 (GmE)(m)/RE
Answer:
Explanation:It is commonly judged by how a vehicle performs particularly during cornering, acceleration, and braking as well as on the vehicle's directional stability when ...